剖析手写数字识别器LeNet-5认识卷积网络
关于卷积神经网络(CNN)的文章网上非常多,也有很多大牛们讲得生动形象,令人十分佩服,也给我的学习带来了很大的帮助,但是关于LeNet-5的具体剖析感觉还没有一篇博文讲得很清楚,本着菜鸟服务菜鸟的精神,写一个通过详细介绍LeNet-5手写识别器的过程来认识卷积网络。
CNN的核心思想无非三种:
1、局部感受野:每个神经元感受局部图像区域;
2、权值共享:同一个滤波器下,每个神经元权值参数是一样的;
3、时间或空间亚采样:模糊图像,带来更好的泛化性能。
其实理解CNN的方法有很多种,比如一个Map是28*28,让它去卷积上一层的Map,怎么看呢?可以看作是28*28个神经元走一次(因为“局部感受野”和“权值共享”嘛)。所以,可以把一个Map叫做一个滤波器,也可以把一个神经元叫做滤波器。
下面介绍这次博文的主题,典型的用来识别数字的卷积网络LeNet-5。当年美国大多数银行就是用它来识别支票上面的手写数字的。能够达到这种商用的地步,它的准确性可想而知。上图。
由图知输入的图像是32*32格式的。
第一步,C1层,也就是卷积层的第一层。一共有6个Map,每个Map分辨率是28*28,每个神经元的分辨率则是(32-28+1)*(32-28+1)=5*5,我们可以把这个神经元看作一个滤波器,而这就是局部感受野,因为一个滤波器只感受5*5的风景。又因为权值共享,同Map下所有的神经元感受的特征都是一样的,所以这整个Map都只能算一个滤波器。每个Map算一个滤波器,每个滤波器有(5*5+1)个参数,28*28个神经元是重复被6个滤波器使用的,每个神经元一共有(5*5+1)*6=156个参数,这里要注意一点,这里是6个滤波器卷一个Map,所以有6个偏置。假如6个滤波器卷两个Map呢?还是只有6个偏置,因为被卷的Map不论数量只算一个偏置。一共有156*(28*28)=122304个连接。
第二步,S2层,下采样层,模糊图像,提高泛化性。6个Map,每个Map14*14,size=2*2,卷积层有重叠,而采样层无重叠,所以每个Map=上一层Map分辨率28*28/size 2*2=14*14。采样层参数计算方法和卷积层也不一样,每个滤波器有可训练参数和可训练偏置两个参数,所以一共有2*6=12个参数。而采样层又是特殊的卷积层,只不过是卷积核为2*2(pool size),所以连接数计算方法不变,一共有(2*2+1)*14*14*6=5880个连接。
第三部,C3层,卷积层。16个Map,每个Map有10*10个神经元,每个神经元分辨率为(14-10+1)*(14-10+1)=5*5,前6个Map卷S2中3个相邻Map,接下来6个Map卷S2中4个相邻Map,接下来3个卷S2中4个不相邻Map,最后一个卷S2中所有Map。一共有6*(3*5*5+1)+6*(4*5*5+1)+3*(4*5*5+1)+1*(6*5*5+1)=1516个参数,一共有1516*10*10=151600个连接。
第四层,S4层,下采样层,16个Map,每个Map有5*5个神经元,pool size=2*2。有32个参数,有(2*2+1)*5*5*16=2000个连接。
第五层,C5层,卷积层。有120个Map,每个神经元与S4的16个Map的5*5相连,所以C5的Map为(5-5+1)*(5-5+1)=1*1个神经元。一共有120*(16*5*5+1)=48120个参数,有1*1*48120个连接。
第六层,F6层,全连接层,84个Map,一共有84*121=10164个参数。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20