你应该知道的模型评估的五个方法
好久没更新了,我怕再不更,我要掉粉了,这次来更新的是模型评估的常见的五个方法:
1、混淆矩阵。
2、提升图&洛伦兹图。
3、 基尼系数
4、ks曲线
5、roc曲线。
1
混淆矩阵不能作为评估模型的唯一标准,混淆矩阵是算模型其他指标的基础,后面会讲到,但是对混淆矩阵的理解是必要的。
模型跑出来的“Y”值为每个客户的预测违约概率,可以理解为客户的有多大的可能违约。把概率等分分段,y坐标为该区间的人数,可以得到这样子一个图表。
可以看到图中这条线,一切下去,在左边就算是违约的客户,那么右边就是正常的客户,本身模型没办法百分百的判断客户的状态,所以cd就算是会误判的,d本来是是左边这个小山的客户,那就是坏客户,但是模型预测他的概率比较高别划分到了好客户的这边了,所以d就是被预测为好客户的坏客户,同样的道理,c就是被预测为坏客户的好客户。
2
提升图&洛伦兹图
假设我们现在有个10000的样本,违约率是7%,我们算出这10000的样本每个客户的违约概率之后降序分为每份都是1000的记录,那么在左图中,第一份概率最高的1000个客户中有255个违约的。违约客户占了全部的36.4。如果不对客户评分,按照总体的算,这个分组;理论上有70个人是违约的。
把刚才的图,每组中的随机违约个数以及模型违约个数化成柱形图,可以看到假设现在是p值越大的客户,违约概率越大,那就是说这里第一组的1000个人就是概率倒序排序之后的前1000个人。那么可以看到通过模型,可以识别到第一组的客户违约概率是最高的,那么在业务上运用上可以特别注意这部分客户,可以给予拒绝的处理。
那么洛伦兹图就是将每一组的一个违约客户的个数累计之后连接成一条线,可以看到在12组的时候,违约人数的数量上升是一个比较明显的状态,但是越到后面的组,违约人数上升的越来越少了。那么在衡量一个模型的标准就是这个条曲线是越靠近y轴1的位置越好,那样子就代表着模型能预测的违约客户集中在靠前的几组,所以识别客户的效果就是更好。
3
基尼系数
洛伦茨曲线是把违约概率降序分成10等分,那么基尼统计量的上图是把违约概率升序分成10等分,基尼统计量的定义则为:
G的值在0到1之间,在随机选择下,G取0。G达到0.4以上即可接受。
4
ks值
ks曲线是将每一组的概率的好客户以及坏客户的累计占比连接起来的两条线,ks值是当有一个点,好客户减去坏客户的数量是最大的。那么ks的值的意义在于,我在那个违约概率的点切下去,创造的效益是最高的,就图中这张图来说就是我们大概在第三组的概率的中间的这个概率切下,我可以最大的让好客户进来,会让部分坏客户进来,但是也会有少量的坏客户进来,但是这已经是损失最少了,所以可以接受。那么在建模中是,模型的ks要求是达到0.3以上才是可以接受的。
5
roc
灵敏度可以看到的是判断正确的违约客户数,这里给他个名字为违约客户正确率(tpr),误判率就是判断错误的正常客户数(fpr)。特殊性就是正常客户的正确率,那么roc曲线是用误判率和违约客户数画的一条曲线。这里就需要明确一点就是,我们要的效果是,tpr的越高越好,fpr是越低越好。ROC曲线就是通过在0-1之间改变用于创建混淆矩阵的临界值,绘制分类准确的违约记录比例与分类错误的正常记录比例。具体我们来看图。
我们首先来看A,B点的含义,A点的TPR大概为0.7左右,FPR大概是0.3左右,那么就是说假设我错误的将30%坏客户判断是坏的,那么可以识别70%的客户肯定坏的。B点的TPR大概为0.3左右,FPR大概是0.7左右,那就是我错误的将70%好客户当做坏客户,只能得到30%的客户是确定 坏客户。所以这么说的话,点越靠近左上方,模型就是越好的,对于曲线也是一样的。
总结
我个人建议,要依据不同的业务目的,选取不同的评估方式, 基尼系数、提升图可以用于用人工审批情况的业务目的,不同的分组突出客户的质量的高低,ks、roc可以用于线上审批审核的情况,根据最小损失公式,计算出概率点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31