SVM算法是一种学习机制,是由Vapnik提出的旨在改善传统神经网络学习方法的理论弱点,最先从最优分类面问题提出了支持向量机网络。SVM学习算法根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折中,以期获得最好的泛化能力。SVM在形式上类似于多层前向网络,而且已被应用于模式识别、回归分析、数据挖掘等方面。
支持向量机这些特点是其他学习算法(如人工神经网络)所不及的。对于分类问题,单层前向网络可解决线性分类问题,多层前向网络可解决非线性分类问题。但这些网络仅仅能够解决问题,并不能保证得到的分类器是最优的;而基于统计学习理论的支持向量机方法能够从理论上实现对不同类别间的最优分类,通过寻找最坏的向量,即支持向量,达到最好的泛化能力。
SVM总的来说可以分为线性SVM和非线性SVM两类。线性SVM是以样本间的欧氏距离大小为依据来决定划分的结构的。非线性的SVM中以卷积核函数代替内积后,相当于定义了一种广义的趾离,以这种广义距离作为划分依据。
模糊支持向量机有两种理解:一种是针对多定义样本或漏分样本进行模糊后处理;另一种是在训练过程中引入模糊因子作用。
SVM在量化投资中的应用主要是进行金融时序数列的预测。根据基于支持向量机的时间序列预测模型,先由训练样本对模型进行训练和完备,然后将时间序列数据进行预测并输出预测结果。
本章介绍的第一个案例是一种基于最小二乘法的支持向最机的复杂金融数据时间序列预测方法,大大提高了求解问题的速度和收敛精度。相比于神经网络预测方法,该方法在大批量金融数据时间序列预测的训练时间、训练次数和预测误差上都有了明显提高,对复杂金融时间序列具有较好的预测效果。
第二个案例是利用SVM进行大盘拐点判断,由于使用单一技术指标对股价反转点进行预测存在较大的误差,所以使用多个技术指标组合进行相互验证就显得特别必要。SVM由于采用了结构风险最小化原则,能够较好地解决小样本非线性和高维数问题,因此通过构造一个包含多个技术指标组合的反转点判断向最,并使用SVM对技术指标组合向量进行数据挖掘,可以得到更加准确的股价反转点预测模型。
支持向量机基本概念
SVM算法是一种学习机制,是由Vapnik提出的旨在改善传统神经网络学习方法的理论弱点,最先从最优分类面问题提出了支持向量机网络。
SVM学习算法根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折中,以期获得最好的泛化能力。SVM在形式上类似于多层前向网络,而且己被应用于模式识别、回归分析、数据挖掘等方面。支持向量机方法能够克服多层前向网络的固有缺陷,它有以下几个优点:
(1)它是针对有限样本情况的。根据结构风险最小化原则,尽量提高学习机的泛化能力,即由有限的训练样本得到小的误差,能够保证对独立的测试集仍保持小的误差,其目标是得到现有信息下的最优解,而不仅仅是样本数趋于无穷大时的最优值。
(2)算法最终将转化成一个二次型寻优问题,从理论上说,得到的将是全局最优点。
(3)算法将实际问题通过非线性变换转换到高维的特征空间,在高维空间中构造线性判别函数来实现原空间中的非线性判别函数,这一特殊的性质能保证机器有较好的泛化能力,同时它巧妙地解决了维数灾难问题,使得其算法复杂度与样本维数无关。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31