因子模型举例:主成分分析
我之前提到的因子风险主要包括经济的(知利率)、基本面的(如账面市值比率)和技术的(如前期收益率)。获得一个包含大童股票的投资组合因子风险的历史数据,并用于对因子模型进行回测,对于独立交易员来说是非常昂贵且不切实际的。不过,有一种因子模型,其构建只依核于历史收益率。这个方法叫做主成分分析(PCA)。
用主成分分析构建因子风险和因子收益率,必须假设因子风险在估计的时间段内是不变的(时间独立)。(这排除了表示均值回归或惯性的因子,因为这些因子风险都与前期收益率有关)。更重要的是,如果假设因子收益率之间“不相关”,协方差矩阵bbT就是对角矩阵。如果用协方差矩阵RRT的特征向量作为APT方程R=Xb+u中矩阵X的列向量,可知bbT的确是对角矩阵,并且矩阵RRT的特征值正好扰是因子收益率b的方差。但是,如果因子数量与股票数量相等,我们就不需要使用因子分析了,因为只要选取几个具有较大特征位的特征向黄就能构成矩阵X。特征向量的个数是一个需要优化的交易模型参数。
下面的MATLAB程序展示了一个对S&P60。小盘股使用主成分分析的可能交易策略。这一策略仅设因于收益率具有惯性,即从本期到下期。因于收益率的值保持不变。因此,可以买入基于这些因子的期望收益率最高的股票,卖出期望收益率最低的股票。如果发现这一策略的平均收益率为负,表明对收益率具有惯性的假设是不合适的,或者策略的特有收益率太大了以至于策略失效。
clear;
%使用回望交易日作为佑计区间(训练集),以此来决定因子风险
%回望期交易日为252天,因子5个
%交易策略为:购买下一个交易日期望收益率最高的50只股票topN = 50;
%选用SP600小盘股做测试(此MATLAB二进制辑入丈件包含交易日,股票,开盘价,最高价,最低价,收盘价)
load('IJR 20080114');
mycls=fillMissingData(cl);
positionsTable=zeros (size(cl));
写dailyret的行是在不同时间段上的观察值
dailyret=(mycls一lagl(mycls))/lagl(mycls);
for t=lookback+1:length(tday)
% R的列是不同的观刻对象
R=dailyret(t-lookback+一:t.:)’;
%不考虑所有收益率缺失的股票
hasData=find(all(isfinite(R),2));
R=R(hasData,:);
avgR=smartmean(R,2);
%移去均值
R=R-repmat(avgR,[1 size(R,2)]);
%计算不同股票收益率的协方差拒阵
covR= smartcov(R');
% X是因子风险矩阵,B是因子收益率的方差
%用covR的特征值作为X的列向量
[X,B]=eig(covR);
%保留的因子数为numFactors
X(:,1:size(X,2)-numFactors) =[];
% b是从时间t-1到t的因子收益率
results=ols(R(:,end),X);b= results.beta;
% Rexp是假设因子收益率保持常数时。下一个时间段的期望收益率
Rexp=avgR+X*b;
[foo idxSort]=sort(Rexp,'ascend');
%做空期望收益率最低的50只股票
positionsTable(t,hasData(idxSort(1:topN)))=-1;
%做多期望收益率最高的50只股票
positionsTable(t,. ..
hasData(idxSort(end-opN+1:end)))=1;
end
%计算交易策略的每日收益率
ret=...
smartsum(backshift(1,positionsTable).*dailyret,2);
%计算交易策略的年化收益率
avgret=smartmean(ret)*252%收益率很低
%avgret=
%
%-1.8099
程序中使用了smartcov函数来计算多只股票日收益平向量的协方差矩阵。与MATLAB内置的cov函数不同,smartcov函数忽略了收益率缺失的交易日(包括NaN值)。
function y=smartcov(x)
% n个有限元素的协方差
% 行为观测值,列为变量
% 用N标准化,而非N-1
y= NaN (size(x,2) , size(x, 2 ));
xc= NaN(size(x));
goodstk=find(~all(isnan(x),1));
xc(:,goodstk)=...
x(:,goodstk)-repmat(smartmean(x(:,goodstk),1),...
[size(x,1)1];%移去均值
for m=1:length(goodstk)
for n=m:length(goodstk)
y(goodstk(m),goodstk(n))=...
smartmean(xc(:,goodstk(m)).
*..xc(:,goodstk(n)));
y(goodstk(n),goodstk(m))=y(goodstk(m) ,goodstk(n));
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30