关于作者:
Cassie Kozyrkov,Google首席决策师。致力于统计学, 机器学习 /人工智能、数据、决策科学。
数据科学是让数据变得有用的学科。在本文中我将对数据科学中以下三个概念进行解读:
统计
数据挖掘/分析
1. 定义数据科学
看到数据科学这个术语的早期历史,你会发现当时有两个概念是密不可分的。
大数据意味着要更多地利用计算机
统计学很难把纸上的算法通过计算机实现
因此,数据科学诞生了。最开始数据科学家的的定义是“能够编程的统计学家”。如今看来,这个说法并不准确,但首先让我们看到数据科学本身。
2003年的数据科学期刊中曾提出:“‘数据科学’意味着任何与数据有关的内容”。我很同意这个观点,现在一切都离不开数据。
之后,我们看到了很多不同的观点,比如Conway的维恩图(下图),以及Mason和Wiggins的经典观点。
Drew Conway对数据科学的定义
我个人更喜欢维基百科上的定义:
数据科学是“结合了统计、数据分析、机器学习及其相关方法的概念”,以便用数据“理解和分析实际现象”。
这有些复杂了,让我们精简一下,即:
“数据科学是让数据有用的学科。”
你现在可能会想,但这也太精简了,“有用”这个词怎么能囊括所有这些术语呢?
那么让我们先看到下面的图。
统计学家和机器学习工程师之间的区别,并不是前者使用R语言而后者使用Python。由于许多原因,用SQL、R、Python进行分类是不明智的,如今你甚至可以用SQL进行机器学习。
新手还喜欢通过算法进行区分,许多大学课程也是这么安排的,这也是不明智的。最好不要用直方图、t检验以及神经网络进行分类。坦率地说,如果你很聪明,其实你可以用相同的算法解决任何数据科学问题。
我建议可以这样进行区分:
这指的是什么呢?当然是决定。你可以根据所需的事实,通过描述性分析得出决策。
我们的行动和决定会影响周围的世界。我们之前谈到要让数据变得有用,而这与现实世界的行动是紧密相关的。
以下是决策导向图,完成这三点能够让数据变得有用。
2. 数据挖掘
如果你不知道想做出什么样的决定,那么最好的做法就是去寻找灵感。这就称为数据挖掘、数据分析、描述性分析、探索性数据分析或(EDA)或知识发现(KD)。
分析的黄金法则:只对你所看到的做出结论。
你可以将数据集想象为在暗室中发现的一堆底片。数据挖掘就是让设备尽快曝光这些照片,看是否能从中得出启发。数据挖掘的黄金法则是:只能对你能看到的做出结论,不要对你看不到的内容做出判断,因为你需要统计数据等更多的专业知识。
数据挖掘的专业知识取决于检查数据的速度。一开始暗房会令人生畏,但其实也没什么大不了的,只是学会使用设备就行了。当你开始乐在其中时,你就可以称为数据分析师了;当你能够飞速地曝光照片时,你就可以称为分析师专家了。
3. 统计推断
灵感很容易获得,但严谨来之不易。如果你想重复利用数据,那么则需要专业的培训。作为本科和硕士都学统计学专业的人,我认为统计推断(简称统计)是三个领域中最难且最具哲学内涵的。想学好统计需要花费大量时间。
如果你打算做出高质量、风险可控的重要决策,那么你需要在分析团队中加入统计技能。在不确定的情况下,统计学是能改变你想法的学科。
4. 机器学习
机器学习实质上是使用例子而不是指令来实现操作。关于机器学习我曾写过一些文章,如关于机器学习与AI 的区别;如何入门机器学习等,如果感兴趣的话可以看看。
The simplest explanation of machine learning you’ll ever read
https://hackernoon.com/the-simplest-explanation-of-machine-learning-youll-ever-read-bebc0700047c
Are you using the term 'AI' incorrectly?
https://medium.com/@kozyrkov/are-you-using-the-term-ai-incorrectly-911ac23ab4f5
Why businesses fail at machine learning
https://hackernoon.com/why-businesses-fail-at-machine-learning-fbff41c4d5db
5. 数据工程
那么数据工程是什么呢?数据工程指的是为数据科学团队提供数据的工作。数据工程本身就是一个复杂的领域,它更接近软件工程,而不是统计学。
数据工程和数据科学之间的差异是前后的区别。获取数据前的大部分技术工作都可以简单地称为“数据工程”,而得到数据后我们所做的一切都是“数据科学”。
6. 决策智能
决策智能是关于决策的,包括对根据大量数据进行决策,因此这也使其成为一个工程学科。它利用社会和管理科学的理念,增强数据科学的应用。
决策智能是社会和管理科学的组成部分。换而言之,它是数据科学的超集,而不涉及为通用用途创建基本方法之类的研究工作。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16