作者:CDA数据分析师
大数据分析与数据分析这几年一直都是个高频词,很多人都开始纷纷转行到这个领域,也有不少人开始跃跃欲试,想找准时机进到大数据或数据分析领域。如今大数据分析和数据分析火爆,要说时机,可谓处处都是时机,关键要明了的一点是,大数据分析和数据分析两者的根本区别在哪里,只有真正了解了,才会知晓更加适合自己的领域是大数据分析师还是数据分析师。毕竟职场如战场,时间就是生活,不容儿戏,更不容怠慢。下面我来好好告诉大家两者的本质区别到底是什么!
大数据分析:指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据分析指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理,因此不用考虑数据的分布状态(抽样数据是需要考虑样本分布是否有偏,是否与总体一致)也不用考虑假设检验,这点也是大数据分析与一般数据分析的一个区别。
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
大数据分析与数据分析最核心的区别是处理的数据规模不同,由此导致两个方向从业者的技能也是不同的。在CDA人才能力标准中从理论基础、软件工具、分析方法、业务分析、可视化五个方面对数据分析师与大数据分析师进行了定义。
【数据分析师的要求】
数据分析师的理论要求:统计学、概率论和数理统计、多元统计分析、时间序列、数据挖掘。
工具要求:必要:Excel、SQL可选:SPSS MODELER、R、Python、SAS等
分析方法要求:除掌握基本数据处理及分析方法以外,还应掌握高级数据分析及数据挖掘方法(多元线性回归法,贝叶斯,神经网络,决策树,聚类分析法,关联规则,时间序列,支持向量机,集成学习等)和可视化技术。
业务分析能力:可以将业务目标转化为数据分析目标;熟悉常用算法和数据结构,熟悉企业数据库构架建设;针对不同分析主体,可以熟练的进行维度分析,能够从海量数据中搜集并提取信息;通过相关数据分析方法,结合一个或多个数据分析软件完成对海量数据的处理和分析。
结果展现能力:报告体现数据挖掘的整体流程,层层阐述信息的收集、模型的构建、结果的验证和解读,对行业进行评估,优化和决策。
【大数据分析师的要求】
理论要求:统计学、概率论和数据库、数据挖掘、JAVA基础、Linux基础。
工具要求:必要: SQL、Hadoop、HDFS、Mapreduce、Mahout、Hive、Spark
可选:RHadoop、Hbase、ZooKeeper等
分析方法要求:熟练掌握hadoop集群搭建;熟悉nosql数据库的原理及特征,并会运用在相关的场景;熟练运用mahout、spark提供的进行大数据分析的数据挖掘算法,包括聚类(kmeans算法、canopy算法)、分类(贝叶斯算法、随机森林算法)、主题推荐(基于物品的推荐、基于用户的推荐)等算法的原理和使用范围。
业务分析能力:熟悉hadoop+hive+spark进行大数据分析的架构设计,并能针对不同的业务提出大数据架构的解决思路。掌握hadoop+hive+ Spark+tableau平台上Spark MLlib、SparkSQL的功能与应用场景,根据不同的数据业务需求选择合适的组件进行分析与处理。并对基于Spark框架提出的模型进行对比分析与完善。
结果展现能力:报告能体现大数据分析的优势,能清楚地阐述数据采集、大数据处理过程及最终结果的解读,同时提出模型的优化和改进之处,以利于提升大数据分析的商业价值。
综上大数据分析与数据分析的根本区别就是分析的思维与分析所用的工具不同。大家在求职或转行过程认清自己对两者的偏好和自己的兴趣所在,以及自己的能力更适合在哪个领域发挥,还有自己所在城市对两者的职业需求,综合天时地利人和三个条件,我们才能做出更理智更客观更科学的抉择。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20