作者: Admond Lee
编译: Mika
本文为 CDA 数据分析师原创作品,转载需授权
在深入探讨这个问题前,让我们退后一步,尝试回答另一个问题:为什么要成为数据科学家?
你一定知道这个职业,数据科学家被《哈佛商业评论》称为是“21世纪最性感的工作”,并且在Glassdoor上连续三年被评为是美国最受追捧的工作。最近IBM预计,到2020年数据科学家的市场需求将飙升28%。
这些非常吸引人的就业前景也让许多人投入数据科学的领域。
那么,现在你可能想知道:为什么我会去拒绝一份数据科学家的工作呢?
我希望在本文中通过分享我的故事,让你一睹我在数据科学领域的经历。让我们开始吧!
有时,职位名称≠工作性质
由于职业目标的不同,职位名称的重要性因人而异。
同样由于人生目标的不同,工作性质的重要性也因人而异。
因此,职位名称和工作性质难以达到完全一致。这常常会让许多求职者陷入两难境地,他们必须从中做出选择,而我也是求职者之一。
申请数据科学家工作
几个月前,我向好几家公司投了简历,希望获得一份数据科学家的工作。正如预期的那样,我常常会受到拒绝的邮件,比如:
感谢您申请XX公司的数据科学家职位,但很抱歉…
感谢您申请XX公司的数据科学家职位,由于我们收到了大量的简历,在此我很遗憾地通知您......
我很沮丧,但我没有放弃。我不断学习和提高自己的技能。
终于有一天,我收到了LinkedIn的面试安排邮件。
我非常兴奋,做了许多的功课,对公司进行了重复地了解,以及我该如何让自己的技能符合公司的职位描述。
工作描述中列出了大量广泛的技能和非技术技能,以及涵盖各个行业的从业经验。职责包括从基础到全局的数据和非数据相关的工作,这意味着求职者必须兼顾多个角色,同时还要符合职位要求。
在我看来,这份工作描述太离谱了,并且要求至少3到5年的初级职位工作经验。
我可能不符合当中70%的工作要求,但我还是自信满满地去面试了,我相信我通过我的技能和经验为公司增添价值,,并在工作中学习。
选择工作性质而不是职位名称
令我惊讶的是,职位描述中提到的70%的工作要求并不在实际工作范围内。
我的工作是为不同的公司和构建用于可视化的仪表板,当中无需进行数据分析。当然,数据可视化是任何数据科学过程中的一个重要部分,但是这个工作性质并不符合我所想做的事情。
我真正想做的是,从了解业务问题、收集数据、进行可视化、原型设计、调整并将模型部署到现实应用阶段,我在使用数据解决复杂问题,从而完成挑战中收获满足感。
然而工作描述与公司给出的实际工作范围形成了鲜明的对比,这让我感到无比困惑。
在上一轮面试之后,我拿到了数据科学家工作的offer。在同一段时间里,我还拿到了另一家公司研究工程师的offer。这份工作描述更加明确,实际的工作范围也符合我想做的事情。
记得我之前提到的,大多数求职者所面临的职位名称与工作性质之间的两难选择吗?最终我选择了后者。
结语
对我来说,职位名称是暂时的,但工作性质,这才是真正让我感兴趣并带来挑战性的,而且还能让我在工作中收获宝贵的技能和经验,这才是最重要的。
直到现在,尽管会面临挑战和障碍,我仍然享受着学习的过程。如果每天都学习新的东西,每天都将不同。
谢谢阅读本文。如果你曾经遇到任何类似的问题,我希望你知道,陷入困境是没关系的,特别是当你刚进入数据科学领域时。
花点时间弄清楚,在你的职业生涯中以及在将来的生活中,你希望实现什么。可能你无法找到明确的答案,但是不要放弃,继续寻找当中的答案,迟早你将作出更明智的选择。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10