我们在上一篇文章中给大家讲述了数据挖掘的四条原则,遵守了这四条原则可以帮助我们更好地应对数据挖掘的工作,但是数据挖掘还是需要模型的,我们对数据挖掘模型的选择也会影响我们的工作。那么怎么选对模型提升呢?下面我们就来给大家讲一讲选对模型提升的方法。
通常来说,没有深刻的业务理解去做数据挖掘往往是事倍功半,行业的业务理解越透彻,就越能抓住数据中本质的特征,诸如图像识别等场景已经可以靠神经网络来自动查找特征了,但大多数行业领域不行,还是要靠业务专家,多组织一次讨论获取的灵感可能远远好过于在算法上折腾一个月。而没有更多更好的数据去训练模型,这就是一件十分困难的事情了,一定要相信数据的重要性远远超过算法,很多初级的建模师算法能力很强,但就是做不成事,往往是因为其对于自身企业的数据理解太浅所致,这些都是我们需要注意到的事情。
如果数据不变,数据挖掘训练的边际效益并不高,同样的一份数据用不同的算法反复训练,比如F1差值并不是很大大,如果要尽快的提升模型的效果,要讲究点方法,尽量遵循以下优先级:业务>数据>算法。只有遵循了这个优先级,知道孰轻孰重,那么我们才能够做好模型的选择。
而一般来说,企业的数据挖掘师都需要通过长时间的取数训练,如果能做过数据仓库的更好,这样对于企业的数据体系有个全局的认识,在特征选择时有更多的发挥空间,大数据中最强调的一个特征是维度多,也一定程度说明了数据多样的重要性。比如基于运营商的语音通话数据可以初步判定欺诈电话,但这个准确率还不高,如果加上社交网络数据,判定就变得很准确了,这就是多维数据的力量,同时数据建模师如果不理解运营商的业务和数据,则可能无法想到这个维度。所以,数据挖掘师还是要清楚这些内容的。
通过这些文章我们给大家介绍了很多提高数据挖掘能力的方法,在进行数据挖掘工作的时候,也是不断地对我们数据挖掘能力的培养与锻炼,只有提高的数据挖掘的能力,我们才能够做好数据挖掘工作,提高自己的职业竞争力。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20