热线电话:13121318867

登录
首页精彩阅读数据挖掘失败的原因都有哪些(二)
数据挖掘失败的原因都有哪些(二)
2019-01-17
收藏


在上一篇文章中我们给大家介绍了数据挖掘失败的两个原因,具体就是假数据真分析以及数据缺失十分严重,这些原因都能够导致我们的数据挖掘工作的失败,那么数据挖掘失败的原因还有哪些呢?下面我们就给大家介绍一下。


前面讲到了数据挖掘工作失败的两个原因,下面我们就给大家说一下数据挖掘失败的第三个原因,那就是数据获取太难了,就目前而言,很多的大量的促销政策时时轰炸眼球,大家看得是热闹,但对于数据挖掘人员来讲,却是业务理解和数据准备的噩梦了,这是因为业务的理解很困难,数据完全被业务扭曲,如果要预测准确,不仅自身业务促销的因素要考虑进去,还要考虑竞争对手策反政策、地域影响等等,你训练时看到的是一个简单的离网结果数据,但诱导因素异常复杂,这类因素相关的数据根本取不到或者难以量化。正是这几个因素,使得数据的挖掘十分困难,这也就使得后续的数据分析工作渐渐偏离了正轨。


数据挖掘,难就难在要为预测的业务提供跟这个业务相关的数据环境,所以有时候数据挖掘工作没做好并不是模型师的错,也不是算法的问题,而是业务惹的祸,是数据问题。而数据挖掘师特别强调要理解业务,就是希望你基于业务的理解能找到所需的解释数据,外来的和尚所以做不好,也是这个因素,因为打一枪换一个地方的方式,就违背了理解业务的建模文化,从而对数据分析工作有很大的影响。而在数据准备工作中,不确定性总是存在,因此一定程度上讲,这个世界是不可预测的,预测的能力,跟我们采集数据的能力成一定的正相关关系。当然,我们还需要理解大数据的意义,大数据的意义就在于可以采集到更多的数据,这个决定了我们用机器解释世界的可能程度。用机器学习去解释世界的事情,那就能够加快理解世界的速度,进而推动文明的发展以及人类的进步。


在这篇文章中我们给大家介绍了数据挖掘失败的原因其中的一种,那就是数据的获取变得困难以及数据的环境的提供,解决了这些问题才能够让数据挖掘工作做得更出色,为后续的工作奠定坚实的基础。

数据分析咨询请扫描二维码

若不方便扫码,搜微信号:CDAshujufenxi

最新资讯
更多
客服在线
立即咨询