热线电话:13121318867

登录
首页精彩阅读数据挖掘失败的原因都有哪些(三)
数据挖掘失败的原因都有哪些(三)
2019-01-17
收藏

在上一篇文章中我们给大家介绍了数据挖掘失败原因的其中一种,同时也是最常见的一种,那就是数据获取太难了。在这篇文章中我们接着给大家介绍数据挖掘失败的其他原因,那就是缺乏对常理的感觉以及缺乏迭代的能力。

首先说一说缺乏对于常理的感觉,在社交网络中有一个案例,那就是很多场景中两个对话的交往圈是有一定的重合度的,这样能够识别两个手机号码是否是同一个人的,这个方法看起来很简单,但是却并没有什么用,后来经过相关技术的发展发现判定重合度的阈值是30%,当然,这个也不能说明有问题,但问题出在对于基数的判定上,大量的用户总的交往圈只有3-4个,也就是说,重合1个就可能达到这个阈值,很多新手或者技术控在进行分析数据过程中,往往忽视业务本质的认识。由此可得,数据挖掘不仅仅是一门挖掘语言,还要有足够的生活认知和数据感觉,这个很难短期能够提升,依赖于长期实践,有时候甚至要求人们对数据的敏感程度要求,有些人就是有感觉,一眼能发现问题。不管是数据挖掘还是数据分析都是需要培养对数据敏感的能力,只要我们看到数据就能够靠直觉及时的发展出来。这样就能够加快数据挖掘能力的培养。

其次说一说缺乏迭代的能力,在传统企业中,如果数据挖掘的效果不尽人意,那么一定和企业的组织、机制、流程等相关,不管是什么业务,很多数据挖掘模型就是由于线下流程的原因而被放弃了,做数据分析行业的人都知道,数据挖掘靠的是迭代,很难第一次就成功,这就需要我们不断的尝试,不断的改进以及优化,这样才能够使得数据挖掘的成功案例变多,而传统企业冗长的线下流程,的确成为了模型优化的大杀器,互联网公司天生的在线性让其算法发挥出巨大的价值,而传统企业的建模,往往还在为获得反馈数据而努力,组织、系统和运营上的差距很大。

在这篇文章中我们给大家介绍了数据挖掘失败原因中的两条,第一就是缺乏对常理的感觉,第二就是缺乏迭代的能力,这些都是我们数据挖掘路上的绊脚石,我们要及时的清理这些“绊脚石”,才能走得更快更顺更有成就感。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询