热线电话:13121318867

登录
首页精彩阅读聊一聊统计学和数据挖掘的区别(七)
聊一聊统计学和数据挖掘的区别(七)
2019-02-13
收藏


在统计学和数据挖掘中,有很多东西都是容易混淆的,比如他们的目的都是一样的,但是统计学主要关注的是定量数据,而数据挖掘中需要处理其他形式的数据,这些也是数据挖掘与统计学中需要注意的事情。统计学和数据挖掘区别还有哪些呢?


当逻辑数据越来越多的时候,比如当要发现的模式由连接的和分离的要素组成的时候。类似的,有时候会碰到高度有序的结构。分析的要素可能是图象,文本,语言信号,或者甚至完全是科学研究资料。而数据挖掘有时候是一次性的实验。这是不正确的。它更应该被看作是一个不断的过程。从一个角度检查数据可以解释结果,以相关的观点检查可能会更接近等等。关键是,除了极少的情形下,很少知道哪一类模式是有意义的。数据挖掘的本质是发现非预期的模式-同样非预期的模式要以非预期的方法来发现。


当我们把数据挖掘作为一个过程的观点相关联的时候,这就是认识到结果的新颖性。许多数据挖掘的结果是我们所期望可以回顾。然而,可以解释这个事实并不能否定挖掘出它们的价值。没有这些实验,可能根本不会想到这些。实际上,只有那些可以依据过去经验形成的合理的解释的结构才会是有价值的。


从上面的内容中,我们显然在数据挖掘存在着一个潜在的机会。在大数据集中发现模式的可能性当然存在,大数据集的数量与日俱增。然而,也不应就此掩盖危险。所有真正的数据集都有产生错误的可能。关于人的数据集尤其有这种可能。这很好的解释了绝大部分在数据中发现的“非预期的结构”本质上是无意义的,而是因为偏离了理想的过程。当然,这样的结构可能会是有意义的:如果数据有问题,可能会干扰搜集数据的目的,最好还是了解它们。与此相关联的是如何确保任何所观察到的模式是“真实的”,它们反应了一些潜在的结构和关联而不仅仅是一个特殊的数据集,由于一个随机的样本碰巧发生。在这里,记分方法可能是相关的,但需要更多的统计学家和数据挖掘工作者的研究。


关于数据挖掘和统计学的区别我们就给大家介绍到来这里了,在这几篇文章中我们从数据挖掘的性质角度以及统计学的性质角度给大家介绍了很多的知识,希望能给各位的学习和职业生涯带来一些帮助。如果还想了解我们更多的内容,快快关注我们吧。

数据分析咨询请扫描二维码

若不方便扫码,搜微信号:CDAshujufenxi

最新资讯
更多
客服在线
立即咨询