热线电话:13121318867

登录
首页精彩阅读机器学习中的基础知识(二)
机器学习中的基础知识(二)
2019-02-19
收藏


在上一篇文章中我们给大家介绍了很多的机器学习中的基础知识,机器学习的基础知识是比较零碎的,但却是十分重要的,所以我们要重视这些内容。在这篇文章中我们会继续为大家介绍机器学习涉及到的基础概念,希望大家能够重视起来。


(1)候选采样是一种优化训练时间的方式,使用 Softmax 等算法计算所有正标签的概率,同时只计算一些随机取样的负标签的概率。这个想法的思路是,负类别可以通过频率更低的负强化进行学习,而正类别经常能得到适当的正强化,实际观察确实如此。候选取样的动力是计算有效性从所有负类别的非计算预测的得益。

(2)标定层是一种调整后期预测的结构,通常用于解释预测偏差。调整后的预期和概率必须匹配一个观察标签集的分布。

(3)分类模型是机器学习模型的一种,将数据分离为两个或多个离散类别。分类模型与回归模型成对比。

(4)类别是所有同类属性的目标值作为一个标签。

(5)类别不平衡数据集是一个二元分类问题,其中两个类别的标签的分布频率有很大的差异。

(6)收敛就是训练过程达到的某种状态,其中训练损失和验证损失在经过了确定的迭代次数后,在每一次迭代中,改变很小或完全不变。换句话说就是,当对当前数据继续训练而无法再提升模型的表现水平的时候,就称模型已经收敛。在深度学习中,损失值下降之前,有时候经过多次迭代仍保持常量或者接近常量,会造成模型已经收敛的错觉。

(7)混淆矩阵就是总结分类模型的预测结果的表现水平的 N×N 表格。混淆矩阵的一个轴列出模型预测的标签,另一个轴列出实际的标签。N 表示类别的数量。在一个二元分类模型中,N=2。多类别分类的混淆矩阵可以帮助发现错误出现的模式。混淆矩阵包含了足够多的信息可以计算很多的模型表现度量,比如精度和召回率

(8)连续特征拥有无限个取值点的浮点特征。和离散特征相反。


通过上面对机器学习概念的描述,相信大家对于机器学习的知识有了一定的了解了吧?大家在进行学习机器学习的时候一定要重视这些知识,这样才能够做好机器学习知识的储备。

数据分析咨询请扫描二维码

若不方便扫码,搜微信号:CDAshujufenxi

最新资讯
更多
客服在线
立即咨询