热线电话:13121318867

登录
首页精彩阅读数据分析中常见的错误是什么(二)
数据分析中常见的错误是什么(二)
2019-02-27
收藏


数据分析中有很多常见的错误,我们在上一篇文章中给大家介绍了很多数据分析的错误。通过对这些错误的介绍,我们可以看出,如果对这些错误置之不理的话就会引发很严重的后果。我们在这篇文章中给大家介绍出更多关于数据分析中常见的错误,希望这篇文章能够更好地帮助大家理解数据分析。


首先就是测量误差,当我们捕获数据的软件或硬件出错时,或无法捕获可用数据或产生虚假数据时,就会出现测量错误。例如,使用日志与服务器不同步,则可能丢失移动应用程序上的用户行为信息。同样,如果我们使用像麦克风这样的硬件传感器,我们的录音可能会捕捉到背景噪音或其他电信号的干扰。


然后就是加工误差。许多企业拥有几十年前的数据,原来能够解释数据决策的团队早已不在了。他们的许多假设和问题很可能没有文档化,这将取决于我们推断,这可能是一项艰巨的任务。我们的团队可能会做出与原始数据收集过程中不同的假设,并得出截然不同的结果。常见的错误包括缺少一个特定的过滤器,使用不同的会计标准,并简单地犯方法错误。


当然,数据分析中常见的错误有覆盖误差。那么什么是覆盖误差,这种误差是指目标受访者都没有足够的机会参与数据调查的情况。例如,如果我们正在收集老年人的数据,但只提供网站调查,那么我们可能会错过许多答卷人。

接着就是抽样误差。当我们分析一个较小的样本时,就会发生抽样误差。当数据只存在于某个群体中时,这是不可避免的。结论就是我们得出的代表性样本可能不适用于整体。


推理错误就是当统计和机器学习模型从已有数据中做出不准确的判断后,它们之后的推理结果也可能是错误的。如果我们有一个非常干净的“地面真实”数据库,那么就可以用它去检测数据模型得出的推理是否正确,但实际上,大多数数据库是充满噪音的,所以我们通常很难确定AI推论的错误点在哪里。


未知错误也是其中一个不能忽视的错误,现实是难以捉摸的,我们不能总是轻易地建立事实。在许多情况下,比如使用数字产品,我们可以捕获大量用户在平台上的行为数据,而不是他们对这些行为的动机。除了已知的许多类型的错误之外,还有一些未知,它们在以数据代表的现实和现实本身之间留下了一个缺口。


一般来说,没有数据科学或机器学习经验的管理人员通常会犯这九大错误,所以从事数据分析行业或人工智能领域的朋友一定要多加注意了,只有学会了这些知识,我们才能再职场上更好地立足并站稳脚跟,不被别人找到把柄,更不被自己的粗心拖累。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询