热线电话:13121318867

登录
首页精彩阅读机器学习中的降维算法和梯度下降法
机器学习中的降维算法和梯度下降法
2019-03-18
收藏


机器学习中有很多算法都是十分经典的,比如说降维算法以及梯度下降法,这些方法都能够帮助大家解决很多问题,因此学习机器学习一定要掌握这些算法,而且这些算法都是比较受大家欢迎的。在这篇文章中我们就给大家重点介绍一下降维算法和梯度下降法。


降维算法


首先,来说一说降维算法,降维算法是一种无监督学习算法,其主要特征是将数据从高维降低到低维层次。在这里,维度其实表示的是数据的特征量的大小,当特征量大的话,那么就给计算机带来了很大的压力,所以我们可以通过降维计算,把维度高的特征量降到维度低的特征量,比如说从4维的数据压缩到2维。类似这样将数据从高维降低到低维有两个好处,第一就是利于表示,第二就是在计算上也能带来加速。


当然,有很多降维过程中减少的维度属于肉眼可视的层次,同时压缩也不会带来信息的损失。但是如果肉眼不可视,或者没有冗余的特征,这怎么办呢?其实这样的方式降维算法也能工作,不过这样会带来一些信息的损失。不过,降维算法可以从数学上证明,从高维压缩到的低维中最大程度地保留了数据的信息。所以说,降维算法还是有很多好处的。


那么降维算法的主要作用是什么呢?具体就是压缩数据与提升机器学习其他算法的效率。通过降维算法,可以将具有几千个特征的数据压缩至若干个特征。另外,降维算法的另一个好处是数据的可视化。这个优点一直别广泛应用。


梯度下降法


下面我们给大家介绍一下梯度下降法,所谓梯度下降法就是一个最优化算法,通常也称为最速下降法。最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的。最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢。好比将函数比作一座山,我们站在某个山坡上,往四周看,从哪个方向向下走一小步,能够下降的最快;当然解决问题的方法有很多,梯度下降只是其中一个,还有很多种方法。


在这篇文章中我们给大家介绍了关于机器算法中的降维算法以及梯度下降法,这两种方法是机器学习中十分常用的算法,降维算法和梯度下降法都是十分实用的,大家在进行学习机器学习的时候一定要好好学习这两种算法,希望这篇文章能够帮助大家理解这两种算法。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询