热线电话:13121318867

登录
首页精彩阅读大数据处理技术之数据清洗
大数据处理技术之数据清洗
2019-03-19
收藏


我们在做数据分析工作之前一定需要对数据进行观察并整理,这是因为挖掘出来的数据中含有很多无用的数据,这些数据不但消耗分析的时间,而且还会影响数据分析结果,所以我们需要对数据进行清洗。在这篇文章中我们重点给大家介绍一下数据清洗的相关知识。


那么什么是数据清洗呢?一般来说,数据清洗是指在数据集中发现不准确、不完整或不合理数据,并对这些数据进行修补或移除以提高数据质量的过程。而通常来说,数据清洗框架由5个步骤构成,第一就是定义错误类型,第二就是搜索并标识错误实例,第三就是改正错误,第四就是文档记录错误实例和错误类型,第五就是修改数据录入程序以减少未来的错误。


我们按照数据清洗的步骤进行工作的时候还需要重视格式检查、完整性检查、合理性检查和极限检查,这些工作也在数据清洗过程中完成。数据清洗对保持数据的一致和更新起着重要的作用,因此被用于多个行业。而尤其是在电子商务领域,尽管大多数数据通过电子方式收集,但仍存在数据质量问题。影响数据质量的因素包括软件错误、定制错误和系统配置错误等。通过检测爬虫和定期执行客户和帐户的重复数据删,对电子商务数据进行清洗。所以说数据清洗倍受大家的关注。


而在RFID领域,有关文献研究了对RFID数据的清洗。一般来说,RFID技术用于许多应用,如库存检查和目标跟踪等。然而原始的RFID数据质量较低并包含许多由于物理设备的限制和不同类型环境噪声导致的异常信息。这就是肮脏数据产生的影响,所以说数据清洗工作是多么的重要。而这一文献则实现了一个框架,这种框架用于对生物数据进行标准化。在该框架的辅助下,生物数据中的错误和副本可以消除,数据挖掘技术能够更高效地运行。


所以说数据清洗对随后的数据分析非常重要,因为它能提高数据分析的准确性。但是数据清洗依赖复杂的关系模型,会带来额外的计算和延迟开销,必须在数据清洗模型的复杂性和分析结果的准确性之间进行平衡。


在这篇文章中我们给大家介绍了很多关于数据清洗的相关知识,通过这篇文章我们不难发现数据清洗的重要性——数据清洗工作占据整个数据分析工作的七成时间。希望这篇文章能够更好地帮助大家。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询