数据清洗工作是数据分析工作中不可缺少的步骤,这是因为数据清洗能够处理掉肮脏数据,如果不清洗数据的话,那么数据分析的结果准确率会变得极低。另外数据清洗工作占据数据分析工作整个过程的七成以上的时间,所以说我们要格外的重视数据清洗工作,那么数据清洗的步骤是什么呢?下面我们就给大家解答一下这个问题。
数据分析工作之前,需要对数据进行预处理,在数据预处理阶段,我们需要做两件事情,第一就是吧数据导入处理工具。通常来说,建议使用数据库,单机跑数搭建MySQL环境即可。如果数据量大,可以使用文本文件存储+Python操作的方式。第二就是看数据。看数据包含两个部分,第一就是看元数据,包括字段解释、数据来源、代码表等等一切描述数据的信息,第二就是抽取一部分数据,使用人工查看方式,对数据本身有一个直观的了解,并且初步发现一些问题,为后面的处理工作做准备。
数据清洗的第一步就是对缺失值进行清洗,一般来说,缺失值是最常见的数据问题,处理缺失值也有很多方法,我们需要按照步骤来做,第一就是确定缺失值范围:对每个字段都计算其缺失值比例,然后按照缺失比例和字段重要性,分别制定策略。第二就是去除不需要的字段,实际操作中是十分简单的,我们直接删掉就可以了,不过需要提醒大家的是,清洗数据的时候每做一步都备份一下,或者在小规模数据上试验成功再处理全量数据,如果删错数据就会追悔莫及。第三步就是填充缺失内容,这是因为某些缺失值可以进行填充,方法有三种,分别是以业务知识或经验推测填充缺失值、以同一指标的计算结果(均值、中位数、众数等)填充缺失值、以不同指标的计算结果填充缺失值。第四个步骤就是重新取数,这是由于某些指标非常重要又缺失率高,那就需要和取数人员或业务人员了解,是否有其他渠道可以取到相关数据。这就是缺失值清洗的步骤。
在这篇文章中我们给大家介绍了关于数据清洗的相关知识,具体就是对缺失值的清洗方法。当然,数据清洗的数据类型还有两种,由于篇幅原因我们就给大家介绍到这里了,我们会在后面的文章中继续为大家介绍。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21