作者 | CDA数据分析师
数据科学是一个研究领域,涉及通过使用各种科学方法,算法和过程从大量数据中提取见解。它可以帮助您从原始数据中发现隐藏的模式。
由于数理统计,数据分析和大数据的发展,数据科学这个术语已经出现。
数据科学是一个跨学科领域,允许您从结构化或非结构化数据中提取知识。数据科学使您能够将业务问题转换为研究项目,然后将其转换回实用的解决方案。
在这里,使用数据分析技术的重大优势:
统计
统计学是数据科学中最关键的部分。它是大量收集和分析数值数据以获得有用见解的方法或科学。
可视化
可视化技术可帮助您使大量的数据易于理解。
机器学习探索了算法的构建和研究,这些算法学习如何预测未来的数据。
深度学习方法是新的机器学习研究,其中算法选择要遵循的分析模型。
1.发现
发现步骤涉及从所有已识别的内部和外部来源获取数据,这有助于您回答业务问题。
数据可以是:
2.数据准备
数据可能有很多不一致,例如缺失值,空白列,需要清理的数据格式不正确。您需要在建模之前处理,探索和调整数据。数据越干净,您的预测就越好。
3.模型规划
在此阶段,您需要确定绘制输入变量之间关系的方法和技术。通过使用不同的统计公式和可视化工具来执行模型的规划。SQL分析服务,R和SAS 是用于此目的的一些工具。
4.模型建设
在此步骤中,实际的模型构建过程开始。在这里,数据科学家分发用于培训和测试的数据集。诸如关联,分类和聚类之类的技术应用于训练数据集。一旦准备好模型就针对“测试”数据集进行测试。
5.操作
在此阶段,您将提供包含报告,代码和技术文档的最终基线模型。经过全面测试后,模型将部署到实时生产环境中。
6.传达结果
在这个阶段,主要调查结果将传达给所有利益相关者。这有助于您根据模型的输入确定项目结果是成功还是失败。
数据科学家
数据科学家是一名管理大量数据的专业人士,通过使用各种工具,技术,方法,算法等来提出令人信服的商业愿景。
语言:R,SAS,Python,SQL,Hive,Matlab,Pig,Spark
数据工程师
数据工程师的角色是处理大量数据。负责开发,构建,测试和维护大型处理系统和数据库等架构。
语言:SQL,Hive,R,SAS,Matlab,Python,Java,Ruby,C ++和Perl
数据分析师
数据分析师负责挖掘大量数据。寻找关系,模式,以及数据的趋势。之后,提供引人注目的报告和可视化,以分析数据,从而做出最可行的业务决策。
语言:R,Python,HTML,JS,C,C ++,SQL
统计员
使用统计理论和方法收集,分析数据,理解定性和定量数据。
语言:SQL,R,Matlab,Tableau,Python,Perl,Spark和Hive
数据管理员
数据管理员应确保所有相关用户都可以访问该数据库。他还确保它正确执行并保持安全,不受黑客攻击。
语言:Ruby on Rails,SQL,Java,C#和Python
业务分析师
改善业务流程,是业务执行团队和IT部门之间的中介。
语言:SQL,Tableau,Power BI和Python
互联网搜索
Google搜索使用数据科学技术在几分之一秒内搜索特定结果
创建推荐系统。例如,Facebook上的“朋友推荐”或“在YouTube上推荐的视频”,一切都是在数据科学的帮助下完成的。
图像和语音识别
语音识别系统像Siri,Google助手,Alexa等运行的数据科学技术。此外,Facebook在数据科学的帮助下,在您上传照片时识别您的朋友。
游戏世界
EA Sports,索尼,任天堂,正在使用数据科学技术。这可以增强您的游戏体验。现在已经开始使用机器学习技术开发游戏。当您移动到更高级别时,它可以自行更新。
在线价格比较
PriceRunner,Junglee,Shopzilla等致力于数据科学机制。在这里,使用API从相关网站获取数据。
数据科学技术的挑战
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20