作者 | Daniel Newman
编译 | 张大笔茹
来源|网络大数据
4 Growing Enterprise AI Trends: Where Are We Now And Where Are We Going?
人工智能比传统的工业自动化和数据处理更牛吗?
答案是肯定的!现在一些诸如图像识别、自然语言处理等AI基本功能已经发展成熟,随着研究的不断深入,AI将来一定会变得越来越强大,能实现的功能也越来越多。
根据麦肯锡预计,到2030年GDP的增长中将会有13万亿美元是来自AI,AI会影响到零售、旅游、交通、物流、医疗、制造业等各个方面,吴恩达也呼吁,企业要设立CAIO(首席人工智能官)。
那现在的人工智能在企业的应用现状如何呢?将来会有怎样的发展?近日,福布斯的一份报道总结了人工智能在企业的四个应用方面和发展趋势,快跟文摘菌一起看看吧。
趋势1:AI必然会超越传统分析
大多数公司已经开始使用一些常见的人工智能功能,而且用户们也基本满意。其中包括个性化定制(个性化广告、电子邮件、自动文本等)和精准营销(您在Spotify,Netflix或亚马逊购物卡等应用上看到的那些推荐)以及其他的营销技术,现在广泛使用的功能是适用于任何规模的企业的。
许多技术也比较成熟了:其中最重要的是机器人流程自动化(RPA)。RPA是AI的初级成果,它即智能又简单。RPA侧重于自动化一个流程,而不是整个企业的垂直流程。
RPA虽然为公司节省了大量的时间和金钱,但尚未达到一定规模。有许多公司最近才刚开始使用RPA技术,而积累一定用户的公司已经开始着手开始进一步流程优化了。
现在既然许多公司已经掌握了基础知识,早期尝到甜头的公司就会想走得更远。他们越来越多地关注AI和ML驱动的预测分析,即企业从数据(特别是实时数据)中提取更多的有价值的信息,甚至利用这些信息做出决策。对知识图谱的理解也更加深入,人工智能可以根据大量数据分析出我们从未想到过的结果。
趋势2:企业使用AI还是会有一定门槛
事实上,目前企业完成人工智能项目还是有难度的。许多公司的项目要么超期,要么需要花很多时间来建立相应的系统,Pactera技术公司最近的一份报告反映了Gartner之前报道的问题:85%的企业AI项目无法如期交付。
Dimensional Research最近发布的另一份报告显示,在人工智能和机器学习方面,每10家企业就有8个表示这他们的AI项目是停滞不前的,而96%的人表示他们在数据质量、数据分类和建模的置信度上遇到了问题。即使像IBM,Uber和亚马逊这样的高科技巨头也不得不在面临巨大的挑战时放弃一些数百万美元的大项目。
这时候是否还要坚持下去呢?其实大可不必!目前对于在AI项目中什么该做,什么不该做已经有足够的总结经验了。一些常见的误区有:起始目标不明确,太多数据(或不当使用数据),使用错误算法,交付成果的周期过长(应该在工作过程中实时检查,保持平衡)。
趋势3:交互性和人性化更强
随着强化学习领域技术的重大进步,人工智能能够通过完成特定目标获得反馈,AI开始变得有“意识”起来。它开始以一种类似人类的但奇怪的方式思考,这也意味着它也有能力开始工作了。人工智能似乎已经到了无限趋近人类的三岔口。
AI正在朝着能够流畅地与人类对话这个目标迈进,初创公司和技术领导者都在争夺聊天机器人,它们不仅能回答问题,而且还具有先进的推理功能。谷歌,微软,亚马逊和IBM都想在会话式人工智能方面取得进步,让AI学会人性化的沟通,就是说人工智能可以根据场景的变化灵活应变。
会话式人工智能的实现需要有力的后端支撑—比如说更强大的硬件。这使得像英特尔这样的公司开始研发用专用推理芯片,以及开发他们声称可以加快计算机深度学习推理过程的DL boost技术。GPU也是竞争越来越激烈,传统上专注于训练的GPU也变得越来越有推断能力,上周NVIDIA公布了一项会话式AI,展示了GPU如何通过推理,实现延迟更短、更自然、更人性化的对话体验。
趋势4:道德问题始终会是个问号
随着人工智能确实变得更加人性化,企业也开始意识到使用,如果AI使用不当会产生严重后果,不仅仅是失业问题,AI算法会是在“不经意间”建立的,且是有偏见的。例如,白人男性写的用于招募的AI软件可能“意外地”选择白人男性作为高度匹配的应聘特征,或者在人脸识别上更多的关注白人。
特别是像IBM这样的公司,他们不仅使用人工智招聘,还用它评价员工的工作表现。你会信任一个机器人来评判你的工作表现吗?来决定你是否应该加薪?这公平吗?
未来,会有更多的与AI相关的道德规范出台。例如,甲骨文建立了一个道德委员会来讨论公平性、问责制和算法的透明度等问题。
IBM也正在研究“可解释的AI”,Microsoft制定了使用聊天机器人责任的指导原则(例如,公司应始终提醒客户他们正在与机器人而不是人进行通信,并提醒他们注意限制)。
由于担心隐私泄露的道德问题,有的城市停止使用人工智能程序面部识别功能,亚马逊也因为同样的原因叫停了员工监控跟踪AI。
人们开始明白虽然人工智能力量强大,现在相互提取或处理的数据类型是没有限制的。但我们必须回答的问题是:应该这样做吗?
展望未来,公司应制定合理的人工智能的发展路线,并且建立例行审计制度来确保他们的人工智能在管理员的掌控之下。这个过程也许会伴随着无休止的辩论:它在哪些方面进行了优化?是否会取代人类?如何对其进行监管以及道德风控等。人工智能的未来令人兴奋,与此同时,这或许也是一个疯狂的旅程。
但是有一点是确定的,那就是人工智能时代已经到来!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31