作者 | Daniel Newman
编译 | 张大笔茹
来源|网络大数据
4 Growing Enterprise AI Trends: Where Are We Now And Where Are We Going?
人工智能比传统的工业自动化和数据处理更牛吗?
答案是肯定的!现在一些诸如图像识别、自然语言处理等AI基本功能已经发展成熟,随着研究的不断深入,AI将来一定会变得越来越强大,能实现的功能也越来越多。
根据麦肯锡预计,到2030年GDP的增长中将会有13万亿美元是来自AI,AI会影响到零售、旅游、交通、物流、医疗、制造业等各个方面,吴恩达也呼吁,企业要设立CAIO(首席人工智能官)。
那现在的人工智能在企业的应用现状如何呢?将来会有怎样的发展?近日,福布斯的一份报道总结了人工智能在企业的四个应用方面和发展趋势,快跟文摘菌一起看看吧。
趋势1:AI必然会超越传统分析
大多数公司已经开始使用一些常见的人工智能功能,而且用户们也基本满意。其中包括个性化定制(个性化广告、电子邮件、自动文本等)和精准营销(您在Spotify,Netflix或亚马逊购物卡等应用上看到的那些推荐)以及其他的营销技术,现在广泛使用的功能是适用于任何规模的企业的。
许多技术也比较成熟了:其中最重要的是机器人流程自动化(RPA)。RPA是AI的初级成果,它即智能又简单。RPA侧重于自动化一个流程,而不是整个企业的垂直流程。
RPA虽然为公司节省了大量的时间和金钱,但尚未达到一定规模。有许多公司最近才刚开始使用RPA技术,而积累一定用户的公司已经开始着手开始进一步流程优化了。
现在既然许多公司已经掌握了基础知识,早期尝到甜头的公司就会想走得更远。他们越来越多地关注AI和ML驱动的预测分析,即企业从数据(特别是实时数据)中提取更多的有价值的信息,甚至利用这些信息做出决策。对知识图谱的理解也更加深入,人工智能可以根据大量数据分析出我们从未想到过的结果。
趋势2:企业使用AI还是会有一定门槛
事实上,目前企业完成人工智能项目还是有难度的。许多公司的项目要么超期,要么需要花很多时间来建立相应的系统,Pactera技术公司最近的一份报告反映了Gartner之前报道的问题:85%的企业AI项目无法如期交付。
Dimensional Research最近发布的另一份报告显示,在人工智能和机器学习方面,每10家企业就有8个表示这他们的AI项目是停滞不前的,而96%的人表示他们在数据质量、数据分类和建模的置信度上遇到了问题。即使像IBM,Uber和亚马逊这样的高科技巨头也不得不在面临巨大的挑战时放弃一些数百万美元的大项目。
这时候是否还要坚持下去呢?其实大可不必!目前对于在AI项目中什么该做,什么不该做已经有足够的总结经验了。一些常见的误区有:起始目标不明确,太多数据(或不当使用数据),使用错误算法,交付成果的周期过长(应该在工作过程中实时检查,保持平衡)。
趋势3:交互性和人性化更强
随着强化学习领域技术的重大进步,人工智能能够通过完成特定目标获得反馈,AI开始变得有“意识”起来。它开始以一种类似人类的但奇怪的方式思考,这也意味着它也有能力开始工作了。人工智能似乎已经到了无限趋近人类的三岔口。
AI正在朝着能够流畅地与人类对话这个目标迈进,初创公司和技术领导者都在争夺聊天机器人,它们不仅能回答问题,而且还具有先进的推理功能。谷歌,微软,亚马逊和IBM都想在会话式人工智能方面取得进步,让AI学会人性化的沟通,就是说人工智能可以根据场景的变化灵活应变。
会话式人工智能的实现需要有力的后端支撑—比如说更强大的硬件。这使得像英特尔这样的公司开始研发用专用推理芯片,以及开发他们声称可以加快计算机深度学习推理过程的DL boost技术。GPU也是竞争越来越激烈,传统上专注于训练的GPU也变得越来越有推断能力,上周NVIDIA公布了一项会话式AI,展示了GPU如何通过推理,实现延迟更短、更自然、更人性化的对话体验。
趋势4:道德问题始终会是个问号
随着人工智能确实变得更加人性化,企业也开始意识到使用,如果AI使用不当会产生严重后果,不仅仅是失业问题,AI算法会是在“不经意间”建立的,且是有偏见的。例如,白人男性写的用于招募的AI软件可能“意外地”选择白人男性作为高度匹配的应聘特征,或者在人脸识别上更多的关注白人。
特别是像IBM这样的公司,他们不仅使用人工智招聘,还用它评价员工的工作表现。你会信任一个机器人来评判你的工作表现吗?来决定你是否应该加薪?这公平吗?
未来,会有更多的与AI相关的道德规范出台。例如,甲骨文建立了一个道德委员会来讨论公平性、问责制和算法的透明度等问题。
IBM也正在研究“可解释的AI”,Microsoft制定了使用聊天机器人责任的指导原则(例如,公司应始终提醒客户他们正在与机器人而不是人进行通信,并提醒他们注意限制)。
由于担心隐私泄露的道德问题,有的城市停止使用人工智能程序面部识别功能,亚马逊也因为同样的原因叫停了员工监控跟踪AI。
人们开始明白虽然人工智能力量强大,现在相互提取或处理的数据类型是没有限制的。但我们必须回答的问题是:应该这样做吗?
展望未来,公司应制定合理的人工智能的发展路线,并且建立例行审计制度来确保他们的人工智能在管理员的掌控之下。这个过程也许会伴随着无休止的辩论:它在哪些方面进行了优化?是否会取代人类?如何对其进行监管以及道德风控等。人工智能的未来令人兴奋,与此同时,这或许也是一个疯狂的旅程。
但是有一点是确定的,那就是人工智能时代已经到来!
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16