作者 | Cameron Warren
来源 | 图灵TOPIA
近日,数据科学家Cameron Warren就数据科学和商业的交集,以及传统数据科学思想的挑战,发表了自己的看法。
过去的6年间, Warren在Adobe, USAA Bank, Nu Skin, Purple Mattress, Franklin Sports等多家公司从事数据科学和分析项目,也在分析领域的四家公司工作过。
他的职业生涯始于“数据科学家”,这项工作被评为“21世纪最性感的工作”。
在6年的时间里,他了解了不同的公司是如何构建、参与和执行数据项目的,并且采访了9家不同的公司,就数据科学家和其他职务进行了分析,并深入了解了公司如何组建数据团队,以及雇用人员的方式。
此外,Warren的这些经验和知识完全是通过导师指导,自学,MOOC课程或在职工作获得的。
他的正式学位是 Latin American (BA) and International Studies (MA),并且几乎没有接受过正式的技术训练。
以下是Warren的分享:
企业数据科学和分析团队是为了解决业务问题
这似乎应该是不言自明的,但不知何故,它不是。我曾无数次看到数据项目失败,在这个过程中,数据团队忘记了自己存在的理由。
数据团队都是一种支持功能,旨在解决合法的业务问题——也就是说,这些问题要么会为公司带来收入,要么会为公司节省资金,仅此而已。
曾经有一个数据科学家告诉我,他花了整整3天时间在预测模型的一个新特性,但公司告诉他这是没必要的,因为所讨论的预测模型预足以满足他们的需求。
技术性的DS和DE喜欢进行修补并深入研究代码。它满足了完善预测模型的需要,并努力保持最后2%或5%的准确性。不幸的是,你从80%的AUC到85%所花的时间可能是一样的。
作为数据专业人员,你的价值取决于模型、管道或数据产品节省或生成的美元。让数据科学家花3天时间修改一个新特性,会损失多少美元?
我并不是说对一个数据科学家来说进行实验是不重要,事实上,这对于一个好的数据科学家来说,实验是至关重要的。
然而,专注于提供ROI更重要。为了提高生产力和实用性,发展能够解决复杂性和不必要的优化的能力,会让数据科学家做得更多,并且能提供更多价值。
几种不同的“数据科学家”
数据科学家是21世纪最性感也是最令人费解的工作。即使他们认为他们愿意,也没有公司愿意雇佣相同的数据科学家。
正如之前的一篇文章中所解释的,数据科学是一个广泛的领域,而不是一个具有三维技能的职位名称。
我厌倦了关于什么是或不是“真正的”数据科学家的争论。这是一个人力资源的问题,并不适用于公司真正需要的东西。
事实上,大多数组织真正需要的是能够整合一系列数据源、创建一些简单模型并实现自动化的人。
这些技能不需要博士学位或高级技术学位,但仍然可以为许多公司提供难以置信的价值。
话虽如此,但是对于高度专业化、受过高等教育的统计学家或研究人员来说,肯定有重要的位置需要他们,这种需求是由不同公司面临的挑战所创造的,而不是作为“数据科学家”角色的笼统要求。
数据工程比数据科学更重要
与开发和调优预测模型的能力相比,数据科学家更需要一种能力,即从那些不用于相互通信的数据源中缝合和组织完全不同的数据集。
除非公司在有限的规则集和业务场景下,面临难以置信的挑战,否则对复杂预测模型的需求将会受到限制。
刚开始涉足数据科学领域就想参与竞争吗? 首先得学习数据工程师的技能,然后弄清楚建模和预测。
如果你决定沿着预测的道路前进,那么对于几乎所有雇用你的公司,你都将变得更有价值,而且你还将创建比同事更好的模型。
与长期进行预测性建模和调整相比,高级SQL,Web抓取,API开发和数据清理技能带来更多收益。
领导者倾向于雇佣像他们一样的人
许多数据科学的领导者(以及一般的领导者)坚持这样的观点,即为了解决复杂的挑战,他们应该雇佣最专业的人(在许多情况下,雇佣那些拥有尽可能接近自己经验的人,而不是更有成就的人)。
就数据科学而言,公司通常的想法是:我雇佣的数据科学家越有资格,我就能解决越复杂的数据挑战。不幸的是,事实远非如此。
这种思想被称为“‘Local Seach”,也就是说,使用来自单个领域的专家,尝试用以前有效的解决方案来解决现有问题。
虽然感觉上这个想法是正确的,但它缺少了关键的“由外而内”的思维方式,比如把经验和想法联系起来的能力,而这种能力可以解决训练以外的问题。
爱泼斯坦在《范围》一书提供了“由外而内”或“横向”思维的例子。
例如,美国礼来公司(Eli Lilly)负责研究的副总裁 Alph Bingham向公司高管们提出了21项研究挑战的提议,这个提议让礼来公司的科学家们感到困惑。
起初,公司高管拒绝了这一提议,他们指出,“如果世界上受过高等教育、高度专业化、资源丰富的化学家们都被技术问题困住了,其他人又怎么能够提供帮助呢?”
最后,公司高管一致认为这个提议不会有什么坏处。
结果是令人震惊的:超过三分之一的挑战已经完全被解决,团队中包括一个完全没有科学经验的律师,但他的知识来自化学。
为了建立一个能够解决真正复杂、重要问题的团队,数据科学的领导者需要雇佣一批具有不同背景和专业知识的人。
同时,他们应该抵制建立具有相同背景甚至相同技术能力的团队。团队的经验和成就的多样性比文凭数量更重要。
数据分析咨询请扫描二维码
数据分析工具推荐 数据分析工具的选择至关重要。不同工具适用于不同的需求和场景。以下是一些推荐的数据分析工具,根据您的需求 ...
2024-11-27选择适合您需求的数据分析工具 数据分析作为商业决策过程中的关键环节,工具的选择至关重要。不同的工具适用于不同的场景和需求 ...
2024-11-27数据架构文档的编写涉及多个方面,包括内容结构、编写原则和具体要求。遵循规范可以帮助团队更好地理解和管理数据架构,支持项目 ...
2024-11-27挑战与解决方案概述 在数字化时代,数据开放共享对于推动创新和发展至关重要。然而,这一进程面临诸多挑战。保护用户隐私、确保 ...
2024-11-27促进科学研究和创新 数据开放共享为研究人员提供更广泛的资源和合作机会,加速科学知识的发展。通过访问他人的数据集,验证研究 ...
2024-11-27数据组织与存储策略 数据模型是数据仓库和商业智能系统的核心,通过合理的数据组织和存储策略,确保高效、低成本、高质量地利用 ...
2024-11-27持续关注数据系统运行状态 - 数据设计与开发完成后,维护与优化工作成为至关重要的环节。这个过程需要持续且细致的关注,以确保 ...
2024-11-27数据服务未来的趋势 智能化和自动化: 随着人工智能和机器学习技术的飞速发展,数据服务领域正逐渐朝着更智能化和自动化的方向 ...
2024-11-27未来最有前景的行业主要集中在以下几个领域: 人工智能与机器学习:人工智能被认为是未来最具潜力的行业之一,其应用范围广泛 ...
2024-11-27根据多条证据,目前多个行业展现出良好的发展前景。以下是一些被认为具有最好发展前景的行业: 人工智能与机器学习:人工智能 ...
2024-11-27学习数据分析后,可以在多种类型的单位找到工作机会。这些单位包括但不限于: 政府机关:数据分析师在政府机构中扮演重要角色 ...
2024-11-27必备的职业技能 统计学基础 - 理解概率、假设检验、回归分析等统计概念。 - 运用统计方法对数据进行分析和解读。 编程能力 - 掌 ...
2024-11-27基础课程 - 统计学基础: 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识。这有助于分析师更好地理解数据背后 ...
2024-11-27数据分析领域涉及众多工具软件,涵盖了从数据处理、分析到可视化的各个方面。在选择适合自己需求的工具时,需要考虑数据规模、分 ...
2024-11-27在数据分析领域,选择合适的工具至关重要。不同的软件适用于不同的需求和技能水平。以下是几款值得考虑的数据分析软件: - Table ...
2024-11-27数据分析中常用的Excel与Python函数公式涵盖了广泛的应用场景。掌握这些基础和高级技巧对于成为一名优秀的数据分析师至关重要。 ...
2024-11-27Python是一种高级编程语言,由荷兰程序员Guido van Rossum于1989年圣诞节期间开始开发,并于1991年首次发布。Python的设计哲学强 ...
2024-11-27课程内容 数学基础: 高等数学、线性代数、概率论与数理统计、微积分等为算法设计和数据分析打下基础。 编程与算法: 掌握 ...
2024-11-27爬虫工程师是互联网时代中至关重要的职业之一,他们的工作内容主要涉及编写和维护网络爬虫程序,进行数据采集与清洗,设计系统架 ...
2024-11-27技能需求 数据管理与建模 - 掌握SQL、HiveQL、Spark SQL等数据库语言,进行复杂数据查询和分析。 - 使用数据建模工具如ER/Studio ...
2024-11-27