作者 | Christopher Dossman
编译 | ronghuaiyang
在机器学习中,有许多方法来构建产品或解决方案,每种方法都假设不同的东西。很多时候,如何识别哪些假设是合理的并不明显。刚接触机器学习的人会犯错误,事后想想,这些错误往往会让人觉得愚蠢。我列了一个清单,上面列出了机器学习工程师新手最常犯的错误。希望你能从这些常见的错误中吸取教训,创建更健壮的解决方案,从而带来真正的价值。
默认的损失函数
均方误差非常大!这确实是一个令人惊讶的默认设置,但在实际应用中,这种现成的损失函数很少适合于你试图解决的业务问题。
以欺诈检测为例。为了与商业目标保持一致,你真正想要的是按因欺诈而损失的金额比例来对假阴性样本进行惩罚。使用均方误差可能会得到不错的结果,但永远不会得到最好的结果。
要点:始终建立一个自定义的损失函数,密切配合你的解决方案目标。
对所有问题使用一种算法/方法
许多人完成他们的第一个教程,并立即开始使用他们在每个用例中所学到的相同算法。它很熟悉,他们认为它和其他算法一样有效。这是一个糟糕的假设,将导致糟糕的结果。
让你的数据为你选择模型。一旦你预处理了你的数据,把它输入到许多不同的模型中,看看结果是什么。你将对什么模型工作得最好和什么模型工作得不太好有一个很好的概念。
要点:如果你发现自己一次又一次地使用相同的算法,这可能意味着你没有得到最好的结果。
忽略离群点
离群点值可能很重要,也可能完全被忽略,这取决于上下文。以污染预测为例。空气污染可能会出现大的峰值,观察它们并了解其原因是一个好主意。在某些类型的传感器错误导致的异常值的情况下,忽略它们并从数据中删除它们是安全的。
从模型的角度来看,有些模型比其他模型对异常值更敏感。以Adaboost为例,它将这些异常值视为“困难”案例,并对异常值施加极大的权重,而决策树可能只是将每个异常值作为一个错误分类。
要点:在开始工作之前,一定要仔细查看数据,确定是否应该忽略或更仔细地查看离群值。
没有适当的处理周期特征
一天中的几个小时,一周中的几天,一年中的几个月,以及风向都是周期性的。许多新的机器学习工程师认为,不能将这些特征转换成一种表示形式,这种表示形式可以保存诸如小时23和小时0之类的信息,它们彼此之间很近,距离也不远。
按照小时的例子,处理这个问题的最好方法是计算sin和cos分量,这样就可以用(x,y)的圆坐标来表示循环特征。在这个表示小时中,23和0在数字上是相邻的,就像它们应该的那样。
要点:如果你有循环特征,而你没有转换它们,你就是在给你的模型垃圾数据。
做L1/L2正则化但是没有标准化
L1和L2正则化对大系数不利,是正则化线性回归或逻辑回归的常用方法,然而,许多机器学习工程师并没有意识到在应用正则化之前对特征进行标准化的重要性。
假设你有一个以事务为特征的线性回归模型。标准化所有的特征,并将它们放在平等的基础上,这样正则化在你的所有特征上都是一样的。不要用美分表示某些特征,而用美元表示其他特征。
要点:正则化很好,但是如果你没有标准化特征,它会让你头疼
线性回归通常为每个系数返回p值。这些系数很多时候会使机器学习新手认为对于线性模型来说,系数的值越大,特征越重要。因为变量的尺度改变了系数的绝对值,所以这并是不正确的。如果特征是共线的,系数可以从一个特征转移到另一个特征。数据集的特征越多,特征越有可能是共线性的,对特征重要性的简单解释就越不可靠。
要点:理解什么特征对结果最重要是重要的,但不要假设你可以查看系数来得到,系数通常不会告诉你事情的全貌。
做几个项目,得到好的结果,感觉就像赢了一百万美元。你努力工作,你有结果证明你做得很好,但就像其他任何行业一样,魔鬼是在细节中,甚至花哨的情节可以隐藏偏见和错误。这个列表并不是面面俱到的,只是让读者思考一下你的解决方案中可能隐藏的所有小问题。为了获得好的结果,遵循你的过程是很重要的,并且要反复检查你没有犯一些常见的错误。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16