
作者丨algorithmia来源 | 大数据与人工智能
机器学习中的线性回归是一种来源于经典统计学的有监督学习技术。然而,随着机器学习和深度学习的迅速兴起,因为线性(多层感知器)层的神经网络执行回归,线性回归的使用也日益激增。
这种回归通常是线性的,但是当把非线性激活函数合并到这些网络中时,它们就可以执行非线性回归。
非线性回归使用某种形式的非线性函数(例如多项式或指数)对输入和输出之间的关系进行建模。非线性回归可以用来模拟科学和经济学中常见的关系,例如,放射性分子的指数衰减或股票市场的走势与全球经济的整体走势一致。
从神经网络的观点来看,我们可以将线性回归模型指定为一个简单的数学关系。简单来说,线性回归是在输入变量和输出变量之间建立一个线性依赖关系模型。根据所处的工作环境,这些输入和输出使用不同的术语来引用。
最常见的是一个包含k个示例的训练数据集,每个示例都有n个输入分量
称为回归变量、协变量或外生变量。输出向量y称为响应变量、输出变量或因变量。在多元线性回归中,可以有多个这样的输出变量。模型的参数
被称为回归系数,或者在深度学习环境中称为权重。对于单个训练示例
,该模型具有以下形式:
我们还可以通过将训练数据压缩到矩阵中:
以此将权重压缩到矢量
中来简化这种表示法。权重构成了模型的核心。它们对输入和输出之间的线性关系进行编码,从而更加重视重要的数据特征,并降低不重要的数据特征的权重。注意,我们向X值为1的每一行添加了一个“隐藏组件”。这让我们能够计算w的点积,其偏置项为
。偏置项允许模型将其计算的线性超平面移开原点,从而允许模型对非零中心数据中的关系进行建模。简化后的模型可以表示为
这是大多数线性回归实现的基础模型。然而,在此基本结构上可以存在许多变体,每种变体都有其自身的缺点和益处。例如,有一个线性回归版本称为贝叶斯线性回归,它通过在模型的权重上放置先验分布来引入一个贝叶斯观点。这样可以更容易地推断模型正在做什么,随后使其结果更具有解释性。
那么我们如何训练线性回归模型呢?这个过程类似于大多数机器学习模型所使用的过程。假设我们有一套训练集
,任务是在不影响模型对新示例预测能力的情况下,尽可能紧密地对这种关系进行建模。为此,我们定义一个损失或目标函数
输入真实输出y和预测输出
,并测量了给定x时模型在预测y时的“好坏程度”。我们使用下标w来表示J的输出取决于模型的权重w,并通过预测y对其进行参数化,即使这些权重值未明确显示在函数的计算中。线性回归通常使用均方误差(MSE)损失函数,定义为:
然后,我们可以使用多种技术之一来优化此损失函数。我们可以使用例如梯度下降法,它是训练神经网络的实际标准,但是对于线性回归来说不是必要的。因为我们其实可以直接解决优化问题,以便找到权重的最佳值w*。
由于我们想要针对w优化此设置,对w取梯度,将结果设置为0,然后求解w的最优设置w*。我们有
现在我们将梯度设置为0并求解w
这是w的最优设置,将为模型提供最佳结果。你可以看到,它仅使用X和y的乘积来计算。然而,它需要
的矩阵求逆,当X非常大或条件不佳时,这在计算上会很困难。在这些情况下,你可以使用不精确的优化方法如梯度下降法或不实际计算矩阵逆的近似技术。
线性回归最常用的变形可能是那些涉及加法正则化的模型。正则化是指对绝对值较大的模型权重进行惩罚的过程。通常这是通过计算一些权重的范数作为附加在成本函数上的惩罚项来完成的。
正则化的目的通常是为了减轻过度拟合的可能性,过度拟合是模型过于紧密地复制其训练数据中基础关系的趋势,无法将其很好地推广到未知示例中。线性回归模型的正则化有两种基本类型:L1和L2。
采用L1正则化的回归模型可以执行Lasso回归。L1规范定义为:
相反,L2正则化将权重向量w的L2范数作为惩罚项添加到目标函数中。 L2规范定义为:
采用L2正则化的回归模型被称为执行Ridge回归(岭回归)。
那么,这些正则化惩罚如何定性地影响模型的结果(输出)的呢?结果表明,L2正则化产生的权重系数很小,但很分散。也就是说,它倾向于生成其中每个系数
相对较小并且幅度相对相似的模型。
相比之下,L1正则化在惩罚系数的方式上更加具体。其中某些系数往往受到严重的惩罚,趋向于0的值,而有些则保持相对不变。L1正则化产生的权值通常被认为是稀疏的。
因此,也有人认为,L1正则化实际上执行了一种软特征选择,即选择对产生期望结果最重要的特征(数据中的分量)。通过将某些权重设为0,该模型表明这些变量实际上对其作用并没有特别的帮助或解释作用。
线性回归可以用在数据中任何可能存在线性关系的地方。对于企业来说,这可能会以销售数据的形式出现。例如,一家企业可能向市场推出一种新产品,但不确定在什么价格销售。
通过在几个选定的价格点上以总销售额的形式测试客户的响应,企业可以使用线性回归推断价格和销售额之间的关系,从而确定销售产品的最佳点。
同样,线性回归可以应用在产品采购和生产线的许多阶段。例如,一个农民可能想要模拟某些环境条件(例如降雨和湿度)的变化如何影响总体农作物产量。这可以帮助他确定一个优化的系统,用于种植和轮作农作物,以实现利润最大化。
最后,线性回归是对数据中简单关系建模的宝贵工具。虽然它不像更现代的机器学习方法那么花哨或复杂,但它通常是许多存在直接关系的现实世界数据集的正确工具。更不用说,建立回归模型的简单性和对它们进行训练的快速性,使其成为那些想要快速有效地进行建立模型的企业的首选工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20