作者 | Jason Brownlee编译 | CDA数据分析师
特征选择是在开发预测模型时减少输入变量数量的过程。
希望减少输入变量的数量,以减少建模的计算成本,并且在某些情况下,还需要改善模型的性能。
基于特征的特征选择方法包括使用统计信息评估每个输入变量和目标变量之间的关系,并选择与目标变量关系最密切的那些输入变量。尽管统计方法的选择取决于输入和输出变量的数据类型,但是这些方法可以快速有效。
这样,当执行基于过滤器的特征选择时,对于机器学习从业者来说,为数据集选择适当的统计量度可能是具有挑战性的。
在本文中,您将发现如何为统计数据和分类数据选择统计度量,以进行基于过滤器的特征选择。
阅读这篇文章后,您将知道:
本教程分为三个部分:他们是:
特征选择方法旨在将输入变量的数量减少到被认为对模型最有用的那些变量,以预测目标变量。
一些预测性建模问题包含大量变量,这些变量可能会减慢模型的开发和训练速度,并需要大量的系统内存。此外,当包含与目标变量无关的输入变量时,某些模型的性能可能会降低。
特征选择算法有两种主要类型:包装器方法和过滤器方法。
包装器特征选择方法会创建许多具有不同输入特征子集的模型,并根据性能指标选择那些导致最佳性能模型的特征。这些方法与变量类型无关,尽管它们在计算上可能很昂贵。RFE是包装功能选择方法的一个很好的例子。
包装器方法使用添加和/或删除预测变量的过程来评估多个模型,以找到使模型性能最大化的最佳组合。
—第490页,应用预测建模,2013年。
过滤器特征选择方法使用统计技术来评估每个输入变量和目标变量之间的关系,这些分数将用作选择(过滤)将在模型中使用的那些输入变量的基础。
过滤器方法在预测模型之外评估预测变量的相关性,然后仅对通过某些标准的预测变量进行建模。
—第490页,应用预测建模,2013年。
通常在输入和输出变量之间使用相关类型统计量度作为过滤器特征选择的基础。这样,统计量度的选择高度依赖于可变数据类型。
常见的数据类型包括数字(例如高度)和类别(例如标签),但是每种数据类型都可以进一步细分,例如数字变量的整数和浮点数,类别变量的布尔值,有序数或标称值。
常见的输入变量数据类型:
对变量的数据类型了解得越多,就越容易为基于过滤器的特征选择方法选择适当的统计量度。
在下一部分中,我们将回顾一些统计量度,这些统计量度可用于具有不同输入和输出变量数据类型的基于过滤器的特征选择。
在本节中,我们将考虑两大类变量类型:数字和类别;同样,要考虑的两个主要变量组:输入和输出。
输入变量是作为模型输入提供的变量。在特征选择中,我们希望减小这些变量的大小。输出变量是模型要预测的变量,通常称为响应变量。
响应变量的类型通常指示正在执行的预测建模问题的类型。例如,数字输出变量指示回归预测建模问题,而分类输出变量指示分类预测建模问题。
通常在基于过滤器的特征选择中使用的统计量度是与目标变量一次计算一个输入变量。因此,它们被称为单变量统计量度。这可能意味着在过滤过程中不会考虑输入变量之间的任何交互。
这些技术大多数都是单变量的,这意味着它们独立地评估每个预测变量。在这种情况下,相关预测变量的存在使选择重要但多余的预测变量成为可能。此问题的明显后果是选择了太多的预测变量,结果出现了共线性问题。
—第499页,应用预测建模,2013年。
使用此框架,让我们回顾一些可用于基于过滤器的特征选择的单变量统计量度。
这是带有数字输入变量的回归预测建模问题。
最常见的技术是使用相关系数,例如使用Pearson进行线性相关,或使用基于秩的方法进行非线性相关。
这是带有数字输入变量的分类预测建模问题。
这可能是最常见的分类问题示例,
同样,最常见的技术是基于相关的,尽管在这种情况下,它们必须考虑分类目标。
Kendall确实假定类别变量为序数。
这是带有分类输入变量的回归预测建模问题。
这是回归问题的一个奇怪示例(例如,您不会经常遇到它)。
不过,您可以使用相同的“ 数值输入,分类输出 ”方法(如上所述),但要相反。
这是带有分类输入变量的分类预测建模问题。
分类数据最常见的相关度量是卡方检验。您还可以使用信息论领域的互信息(信息获取)。
实际上,互信息是一种强大的方法,可能对分类数据和数字数据都有用,例如,与数据类型无关。
使用基于过滤器的功能选择时,本节提供了一些其他注意事项。
scikit-learn库提供了大多数有用的统计度量的实现。
例如:
此外,SciPy库提供了更多统计信息的实现,例如Kendall的tau(kendalltau)和Spearman的排名相关性(spearmanr)。
一旦针对具有目标的每个输入变量计算出统计信息,scikit-learn库还将提供许多不同的过滤方法。
两种比较流行的方法包括:
我经常自己使用SelectKBest。
考虑转换变量以访问不同的统计方法。
例如,您可以将分类变量转换为序数(即使不是序数),然后查看是否有任何有趣的结果。
您还可以使数值变量离散(例如,箱);尝试基于分类的度量。
一些统计度量假设变量的属性,例如Pearson假设假定观测值具有高斯概率分布并具有线性关系。您可以转换数据以满足测试的期望,然后不管期望如何都可以尝试测试并比较结果。
没有最佳功能选择方法。
就像没有最佳的输入变量集或最佳的机器学习算法一样。至少不是普遍的。
相反,您必须使用认真的系统实验来发现最适合您的特定问题的方法。
尝试通过不同的统计量度来选择适合不同特征子集的各种不同模型,并找出最适合您的特定问题的模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31