 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		 
 
作者 | Jason Brownlee编译 | CDA数据分析师
使用实值数据(例如使用Pearson的相关系数)时,特征选择通常很简单,但是使用分类数据时可能会遇到挑战。
当目标变量也是分类的(例如分类预测建模)时,分类输入数据的两种最常用的特征选择方法是卡方统计和互信息统计。
在本教程中,您将发现如何使用分类输入数据执行特征选择。
完成本教程后,您将知道:
本教程分为三个部分:他们是:
 
 
作为本教程的基础,我们将使用自1980年代以来作为机器学习数据集而被广泛研究的所谓“ 乳腺癌 ”数据集。
该数据集将乳腺癌患者数据分类为癌症复发或无复发。有286个示例和9个输入变量。这是一个二进制分类问题。
天真的模型可以在此数据集上达到70%的精度。好的分数大约是76%+/- 3%。我们将针对该区域,但是请注意,本教程中的模型并未进行优化。它们旨在演示编码方案。
您可以下载数据集,然后将文件另存为“ breast-cancer.csv ”在当前工作目录中。
查看数据,我们可以看到所有九个输入变量都是分类的。
具体来说,所有变量都用引号引起来;有些是序数,有些不是。
'40-49','premeno','15-19','0-2','yes','3','right','left_up','no','recurrence-events' '50-59','ge40','15-19','0-2','no','1','right','central','no','no-recurrence-events' '50-59','ge40','35-39','0-2','no','2','left','left_low','no','recurrence-events' '40-49','premeno','35-39','0-2','yes','3','right','left_low','yes','no-recurrence-events' '40-49','premeno','30-34','3-5','yes','2','left','right_up','no','recurrence-events' ...
我们可以使用Pandas库将该数据集加载到内存中。
... # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values
加载后,我们可以将列分为输入(X)和输出以进行建模。
... # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1]
最后,我们可以将输入数据中的所有字段都强制为字符串,以防万一熊猫试图将某些字段自动映射为数字(确实如此)。
... # format all fields as string X = X.astype(str)
我们可以将所有这些结合到一个有用的功能中,以备后用。
# load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y
加载后,我们可以将数据分为训练集和测试集,以便我们可以拟合和评估学习模型。
我们将使用scikit-learn形式的traintestsplit()函数,并将67%的数据用于训练,将33%的数据用于测试。
... # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)
将所有这些元素结合在一起,下面列出了加载,拆分和汇总原始分类数据集的完整示例。
# load and summarize the dataset from pandas import read_csv from sklearn.model_selection import train_test_split # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # summarize print('Train', X_train.shape, y_train.shape) print('Test', X_test.shape, y_test.shape)
运行示例将报告训练和测试集的输入和输出元素的大小。
我们可以看到,我们有191个示例用于培训,而95个用于测试。
Train (191, 9) (191, 1) Test (95, 9) (95, 1)
既然我们已经熟悉了数据集,那么让我们看一下如何对它进行编码以进行建模。
我们可以使用scikit-learn的OrdinalEncoder()将每个变量编码为整数。这是一个灵活的类,并且允许将类别的顺序指定为参数(如果已知这样的顺序)。
注意:我将作为练习来更新以下示例,以尝试为具有自然顺序的变量指定顺序,并查看其是否对模型性能产生影响。
对变量进行编码的最佳实践是使编码适合训练数据集,然后将其应用于训练和测试数据集。
 
 
下面名为prepare_inputs()的函数获取火车和测试集的输入数据,并使用序数编码对其进行编码。
# prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc
我们还需要准备目标变量。
这是一个二进制分类问题,因此我们需要将两个类标签映射到0和1。这是一种序数编码,而scikit-learn提供了专门为此目的设计的LabelEncoder类。尽管LabelEncoder设计用于编码单个变量,但我们可以轻松使用OrdinalEncoder并获得相同的结果。
所述prepare_targets()函数整数编码的训练集和测试集的输出数据。
# prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc
我们可以调用这些函数来准备我们的数据。
... # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test)
综上所述,下面列出了加载和编码乳腺癌分类数据集的输入和输出变量的完整示例。
# example of loading and preparing the breast cancer dataset from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y # prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc # prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test)
现在我们已经加载并准备了乳腺癌数据集,我们可以探索特征选择。
有两种流行的特征选择技术,可用于分类输入数据和分类(类)目标变量。
他们是:
让我们依次仔细研究每个对象。
皮尔逊的卡方统计假设检验是分类变量之间独立性检验的一个示例。
您可以在教程中了解有关此统计测试的更多信息:
该测试的结果可用于特征选择,其中可以从数据集中删除与目标变量无关的那些特征。
scikit-learn机器库在chi2()函数中提供了卡方检验的实现。此功能可用于特征选择策略中,例如通过SelectKBest类选择前k个最相关的特征(最大值)。
例如,我们可以定义SelectKBest类以使用chi2 ()函数并选择所有功能,然后转换训练序列和测试集。
... fs = SelectKBest(score_func=chi2, k='all') fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test)
然后,我们可以打印每个变量的分数(越大越好),并将每个变量的分数绘制为条形图,以了解应该选择多少个特征。
... # what are scores for the features for i in range(len(fs.scores_)): print('Feature %d: %f' % (i, fs.scores_[i])) # plot the scores pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_) pyplot.show()
将其与上一节中乳腺癌数据集的数据准备结合在一起,下面列出了完整的示例。
# example of chi squared feature selection for categorical data from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from matplotlib import pyplot # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y # prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc # prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc # feature selection def select_features(X_train, y_train, X_test): fs = SelectKBest(score_func=chi2, k='all') fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test) return X_train_fs, X_test_fs, fs # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test) # feature selection X_train_fs, X_test_fs, fs = select_features(X_train_enc, y_train_enc, X_test_enc) # what are scores for the features for i in range(len(fs.scores_)): print('Feature %d: %f' % (i, fs.scores_[i])) # plot the scores pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_) pyplot.show()
 
 
首先运行示例将打印为每个输入要素和目标变量计算的分数。
注意:您的具体结果可能会有所不同。尝试运行该示例几次。
在这种情况下,我们可以看到分数很小,仅凭数字很难知道哪个功能更相关。
也许功能3、4、5和8最相关。
Feature 0: 0.472553 Feature 1: 0.029193 Feature 2: 2.137658 Feature 3: 29.381059 Feature 4: 8.222601 Feature 5: 8.100183 Feature 6: 1.273822 Feature 7: 0.950682 Feature 8: 3.699989
创建每个输入要素的要素重要性得分的条形图。
这清楚地表明,特征3可能是最相关的(根据卡方),并且九个输入特征中的四个也许是最相关的。
在配置SelectKBest来选择这前四个功能时,我们可以设置k = 4 。
 
 
输入要素的条形图(x)vs Chi-Squared要素重要性(y)
来自信息理论领域的互信息是信息增益(通常用于决策树的构建)在特征选择中的应用。
在两个变量之间计算互信息,并在给定另一个变量的已知值的情况下测量一个变量的不确定性降低。
您可以在以下教程中了解有关相互信息的更多信息。
scikit-learn机器学习库通过commoninfoclassif()函数提供了用于信息选择的互信息实现。
像chi2()一样,它可以用于SelectKBest特征选择策略(和其他策略)中。
# feature selection def select_features(X_train, y_train, X_test): fs = SelectKBest(score_func=mutual_info_classif, k='all') fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test) return X_train_fs, X_test_fs, fs
我们可以使用关于乳腺癌组的相互信息来进行特征选择,并像上一节中那样打印和绘制分数(越大越好)。
下面列出了使用互信息进行分类特征选择的完整示例。
# example of mutual information feature selection for categorical data from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import mutual_info_classif from matplotlib import pyplot # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y # prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc # prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc # feature selection def select_features(X_train, y_train, X_test): fs = SelectKBest(score_func=mutual_info_classif, k='all') fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test) return X_train_fs, X_test_fs, fs # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test) # feature selection X_train_fs, X_test_fs, fs = select_features(X_train_enc, y_train_enc, X_test_enc) # what are scores for the features for i in range(len(fs.scores_)): print('Feature %d: %f' % (i, fs.scores_[i])) # plot the scores pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_) pyplot.show()
首先运行示例将打印为每个输入要素和目标变量计算的分数。
注意:您的具体结果可能会有所不同。尝试运行该示例几次。
在这种情况下,我们可以看到某些功能的得分很低,表明也许可以将其删除。
也许功能3、6、2和5最相关。
Feature 0: 0.003588 Feature 1: 0.000000 Feature 2: 0.025934 Feature 3: 0.071461 Feature 4: 0.000000 Feature 5: 0.038973 Feature 6: 0.064759 Feature 7: 0.003068 Feature 8: 0.000000
创建每个输入要素的要素重要性得分的条形图。
重要的是,促进了特征的不同混合。
 
 
既然我们知道如何针对分类预测建模问题对分类数据执行特征选择,那么我们可以尝试使用选定的特征开发模型并比较结果。
有许多不同的技术可用来对特征评分和根据分数选择特征。您怎么知道要使用哪个?
一种可靠的方法是使用不同的特征选择方法(和特征数量)评估模型,然后选择能够产生最佳性能的模型的方法。
在本节中,我们将评估具有所有要素的Logistic回归模型,并将其与通过卡方选择的要素和通过互信息选择的要素构建的模型进行比较。
逻辑回归是测试特征选择方法的良好模型,因为如果从模型中删除了不相关的特征,则逻辑回归性能会更好。
第一步,我们将使用所有可用功能评估LogisticRegression模型。
该模型适合训练数据集,并在测试数据集上进行评估。
下面列出了完整的示例。
# evaluation of a model using all input features from pandas import read_csv from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y # prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc # prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test) # fit the model model = LogisticRegression(solver='lbfgs') model.fit(X_train_enc, y_train_enc) # evaluate the model yhat = model.predict(X_test_enc) # evaluate predictions accuracy = accuracy_score(y_test_enc, yhat) print('Accuracy: %.2f' % (accuracy*100))
运行示例将在训练数据集上打印模型的准确性。
注意:根据学习算法的随机性,您的特定结果可能会有所不同。尝试运行该示例几次。
在这种情况下,我们可以看到该模型实现了约75%的分类精度。
我们宁愿使用能够实现比此更好或更高的分类精度的功能子集。
Accuracy: 75.79
 
 
下面的select_features()函数已更新以实现此目的。
# feature selection def select_features(X_train, y_train, X_test): fs = SelectKBest(score_func=chi2, k=4) fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test) return X_train_fs, X_test_fs
下面列出了使用这种特征选择方法评估逻辑回归模型拟合和对数据进行评估的完整示例。
# evaluation of a model fit using chi squared input features from pandas import read_csv from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y # prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc # prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc # feature selection def select_features(X_train, y_train, X_test): fs = SelectKBest(score_func=chi2, k=4) fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test) return X_train_fs, X_test_fs # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test) # feature selection X_train_fs, X_test_fs = select_features(X_train_enc, y_train_enc, X_test_enc) # fit the model model = LogisticRegression(solver='lbfgs') model.fit(X_train_fs, y_train_enc) # evaluate the model yhat = model.predict(X_test_fs) # evaluate predictions accuracy = accuracy_score(y_test_enc, yhat) print('Accuracy: %.2f' % (accuracy*100))
运行示例将报告使用卡方统计量选择的九个输入要素中只有四个要素的模型性能。
注意:根据学习算法的随机性,您的特定结果可能会有所不同。尝试运行该示例几次。
在这种情况下,我们看到该模型的准确度约为74%,性能略有下降。
实际上,某些已删除的功能可能会直接增加价值,或者与所选功能一致。
在这个阶段,我们可能更喜欢使用所有输入功能。
Accuracy: 74.74
我们可以重复实验,并使用相互信息统计量选择前四个功能。
下面列出了实现此目的的select_features()函数的更新版本。
# feature selection def select_features(X_train, y_train, X_test): fs = SelectKBest(score_func=mutual_info_classif, k=4) fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test) return X_train_fs, X_test_fs
下面列出了使用互信息进行特征选择以拟合逻辑回归模型的完整示例。
# evaluation of a model fit using mutual information input features from pandas import read_csv from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import mutual_info_classif from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y # prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc # prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc # feature selection def select_features(X_train, y_train, X_test): fs = SelectKBest(score_func=mutual_info_classif, k=4) fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test) return X_train_fs, X_test_fs # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test) # feature selection X_train_fs, X_test_fs = select_features(X_train_enc, y_train_enc, X_test_enc) # fit the model model = LogisticRegression(solver='lbfgs') model.fit(X_train_fs, y_train_enc) # evaluate the model yhat = model.predict(X_test_fs) # evaluate predictions accuracy = accuracy_score(y_test_enc, yhat) print('Accuracy: %.2f' % (accuracy*100))
运行示例使模型适合于使用互信息选择的前四个精选功能。
注意:根据学习算法的随机性,您的特定结果可能会有所不同。尝试运行该示例几次。
在这种情况下,我们可以看到分类精度小幅提升至76%。
为了确保效果是真实的,最好将每个实验重复多次并比较平均效果。探索使用k倍交叉验证而不是简单的训练/测试拆分也是一个好主意。
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23