相信接触过Excel的小伙伴都知道,Excel有一个非常强大的功能“数据透视表”,使用数据透视表可以自由选择不同字段,用不同的聚合函数进行汇总,并建立交叉表格,用以从不同层面观察数据。这么强大的功能,在Python中怎么去实现呢?
不用担心,Python的"数据分析小能手"Pandas很贴心地为我们提供了一个快速实现数据透视表功能的方法——pivot_table()。事不宜迟,让我们赶紧看看如何在Python中实现数据透视表!
为帮助大家更好地理解,在讲解如何使用pivot_table( )实现透视表前,我们先导入示例数据,在接下来的讲解中都使用此数据作为例子。
# 导入示例数据 <<< data =pd.read_csv("data.csv") <<< data.head() 月份 项目 部门 金额 剩余金额 0 1月 水费 市场部 1962.37 8210.58 1 2月 水费 市场部 690.69 9510.60 2 2月 电费 市场部 2310.12 5384.92 3 2月 电费 运营部 -1962.37 7973.10 4 2月 电费 开发部 1322.33 6572.16
下面我将带大家使用pivot_table( )一步一步实现数据透视表的操作。
首先,原数据有5个字段,我们在做数据透视表之前必须理解每个字段的意思,明确清楚自己需要得到什么信息。
假设我们想看看不同月份所花费的水电费金额是多少,这时我们需要把字段“月份”设置为索引,将字段“金额”设置为我们需要看的值,具体代码如下:
<<< data.pivot_table(index=['月份'],values=['金额']) 金额 月份 10月 3723.940000 11月 2900.151667 12月 10768.262857 1月 1962.370000 2月 1432.280000 3月 3212.106667 4月 4019.175000 5月 4051.480000 6月 6682.632500 7月 11336.463333 8月 17523.485000 9月 10431.960000
参数index为设置的索引列表,即分组依据,需要用中括号[ ]将索引字段括起来;参数values为分组后进行计算的字段列表,也需要用中括号[ ]括起来。这两个参数的值可以是一个或多个字段,即按照多个字段进行分组和对多个字段进行计算汇总。例如,设置index=['项目','部门']代表求不同项目不同部门下的金额。
<<< data.pivot_table(index=['项目','部门'],values=['金额']) 金额 项目 部门 水费 市场部 3614.318125 开发部 2358.205000 运营部 5896.213333 电费 市场部 6094.748235 开发部 1322.330000 运营部 7288.615000 采暖费 市场部 5068.380000 运营部 55978.000000
若设置values=['金额','剩余金额'],即求不同项目不同部门下金额和剩余金额的值。
<<< data.pivot_table(index=['项目','部门'],values=['金额','剩余金额']) 剩余金额 金额 项目 部门 水费 市场部 7478.423125 3614.318125 开发部 6866.490000 2358.205000 运营部 7224.033333 5896.213333 电费 市场部 7645.535882 6094.748235 开发部 6572.160000 1322.330000 运营部 8821.895000 7288.615000 采暖费 市场部 6572.030000 5068.380000 运营部 7908.560000 55978.000000
同时,如果我们想以交叉表的形式查看不同项目和不同部门下的消费金额,这时就要将字段‘部门’设置为列名,进行交叉查看,具体代码如下:
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额']) 金额 部门 市场部 开发部 运营部 项目 水费 3614.318125 2358.205 5896.213333 电费 6094.748235 1322.330 7288.615000 采暖费 5068.380000 NaN 55978.000000
通过上面的示例,我们可以看到某个分组下不存在记录会被标记为NAN,例如上述中采暖部和开发部不存在金额这一字段的记录,则会标记为NAN。如果不希望被标记为NAN,我们可以通过设置参数fill_value=0来用数值0替代这部分的缺失值。
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额'],fill_value=0) 金额 部门 市场部 开发部 运营部 项目 水费 3614.318125 2358.205 5896.213333 电费 6094.748235 1322.330 7288.615000 采暖费 5068.380000 0.000 55978.000000
在上面的示例中,我们都是默认分组后对值进行求平均值计算,假如我们想查看不同项目不同部门下金额的总和该怎么实现呢?
通过设置参数aggfunc=np.sum即可对分组后的值进行求和操作,参数aggfunc代表分组后值的汇总方式,可传入numpy库中的聚合方法。
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额'],fill_value=0,aggfunc=np.sum) 金额 部门 市场部 开发部 运营部 项目 水费 57829.09 4716.41 17688.64 电费 103610.72 1322.33 29154.46 采暖费 5068.38 0.00 55978.00
除了常见的求和、求平均值这两种聚合方法,我们还可能接触到以下这几种:
描述方法标准差np.std()方差np.var()所有元素相乘np.prod()中数np.median()幂运算np.power()开方np.sqrt()最小值np.min()最大值np.max()以e为底的指数np.exp(10)对数np.log(10)
与前面介绍的参数index,columns,value一样,参数aggfunc传入的值也是一个列表,表示可传入一个或多个值。当传入多个值时,表示对该值进行多种汇总方式,例如同时求不同项目不同部门下金额的求和值和平均值:
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额'],fill_value=0,aggfunc=[np.sum,np.max]) sum amax 金额 金额 部门 市场部 开发部 运营部 市场部 开发部 运营部 项目 水费 57829.09 4716.41 17688.64 16807.58 2941.28 6273.56 电费 103610.72 1322.33 29154.46 18239.39 1322.33 26266.60 采暖费 5068.38 0.00 55978.00 5068.38 0.00 55978.00
同时,如果我们想对不同字段进行不同的汇总方式,可通过对参数aggfunc传入字典来实现,例如我们可以同时对不同项目不同部门下,对字段金额求总和值,对字段剩余金额求平均值:
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额','剩余金额'],fill_value=0,aggfunc={'金额':np.sum,'剩余金额':np.max}) 剩余金额 金额 部门 市场部 开发部 运营部 市场部 开发部 运营部 项目 水费 9510.60 8719.34 7810.38 57829.09 4716.41 17688.64 电费 9625.27 6572.16 9938.82 103610.72 1322.33 29154.46 采暖费 6572.03 0.00 7908.56 5068.38 0.00 55978.00
另外,在进行以上功能的同时,pivot_table还为我们提供了一个求所有行及所有列对应合计值的参数margins,当设置参数margins=True时,会在输出结果的最后添加一行'All',表示根据columns进行分组后每一项的列总计值;以及在输出结果的最后添加一列'All',表示根据index进行分组后每一项的行总计值。
<<< pd.set_option('precision',0) <<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额','剩余金额'],fill_value=0,aggfunc={'金额':np.sum,'剩余金额':np.max},margins=True) 剩余金额 金额 部门 市场部 开发部 运营部 All 市场部 开发部 运营部 All 项目 水费 9511 8719 7810 9511 57829 4716 17689 80234 电费 9625 6572 9939 9939 103611 1322 29154 134088 采暖费 6572 0 7909 7909 5068 0 55978 61046 All 9625 8719 9939 9939 166508 6039 102821 275368
上面详细介绍了如何在python中通过pivot_table( )方法实现数据透视表的功能,那么,与数据透视表原理相同,显示方式不同的‘数据透视图’又该怎么实现呢?
实现方法非常简单,将上述进行pivot_table操作后的对象进行实例化,再对实例化后的对象进行plot绘图操作即可,具体代码如下:
<<< df=data.pivot_table(index=['项目'],columns=['部门'],values='金额',fill_value=0) <<< df.plot(kind='bar')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30