在使用python清理数据时,会接触到lambda表达式配合使用的四种函数、它们分别是:filter函数、map函数、sorted函数、reduce函数。下面我们来为大家详细讲解python清理数据领域的知识。
什么是lambda表达式
lambda 表达式是一个匿名函数,lambda表达式基于数学中的λ演算得名,直接对应于其中的lambda抽象,是一个匿名函数,即没有函数名的函数。
lambda表达式常用来声明匿名函数,即没有函数名字的临时使用的小函数,常用在临时需要一个类似于函数的功能但又不想定义函数的场合。它只可以包含一个表达式,不允许包含其他复杂的语句,但在表达式中可以调用其他函数,该表达式的计算结果相当于函数的返回结果。
lambda表达式可以接受任意数量的参数,但函数只能包含一个表达式。表达式是lambda函数执行的一段代码,它可以返回任何值,返回函数对象。
lambda表达式可以返回函数对象。
在Python中,lambda的语法是唯一的。其形式如下:
我们可以有很多个参数,但是只能有一个表达式。lambda操作符不能有任何声明,它返回一个函数对象。其中,lambda是Python预留的关键字,argument_list和expression由用户自定义。
lambda函数有如下特性:
下面是一些lambda表达式的基本用法示例:
lambda表达式返回的是一个函数对象,其本质上只有一种用法,那就是定义一个lambda匿名函数。在实际中,根据这个lambda函数应用场景的不同,lambda函数的用法有很多种,其中一种就是将lambda函数作为参数传递给其他函数。
Python有少数内置函数可以接收lambda函数作为参数,进行组合使用,这也是最为常见的一种用法。典型的此类内置函数有一下这四种。filter函数:筛选列表中所有满足条件的元素,lambda函数作为过滤列表元素的条件。
filter( )函数用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,注意返回的不是列表,如果要转换为列表,可以使用 list()来转换。
该函数接收两个参数,第一个为函数,第二个为序列,filter函数的重点在于过滤,所以它必须有一个用于判断的工具,这就是function参数的函数,传入的函数返回值必须是布尔类型,序列的每个元素作为参数逐个传递给函数进行判断,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。
简单示例一:
简单示例二:
简单示例三:
map( )会根据提供的函数对指定序列做映射,即根据传入的函数逐一对序列中的元素进行计算。
该函数至少接收两个参数,第一个参数为函数function,第二个参数为可迭代对象iterable,第二个参数序列中的每一个元素调用第一个参数 function函数来进行计算,返回包含每次 function 函数返回值的可迭代对象,map( )函数和filter( )函数一样,在python3版本中返回的都是可迭代对象,有需要的话用list( )函数将其转换成列表格式。
简单示例一:
简单示例二:
map( )函数可以仅对一个序列进行运算,也可以输入多个序列进行并行运算,对多个序列同一位置的元素来逐步进行运算。序列不要求长度必须相同,最后返回的结果遵循木桶准则,以多个序列中长度最短的长度为准,即传入一个长度为4的序列,一个长度为7的序列,最终返回的序列长度为4。
简单示例三:
sorted( ) 函数的作用是对所有可迭代的对象进行排序操作。它和sort函数的作用类似,但它们之间还是有一些区别:
执行结果:
语法:
sorted(iterable, key=None, reverse=False)
参数说明:
返回:
重新排序后的列表,无论用什么可迭代对象进行排序,最终返回的都是列表。
简单示例一:
一维的序列无需key参数,只需要可迭代对象和reverse排序规则即可,注意,第一个参数可以默认为iterable可迭代对象,不可更改顺序,后两个可选参数传入函数时,必须包含变量名称,例如
简单示例二:
二维及以上的序列可以使用key参数传入lambda匿名函数结合使用,实现按条件排序的作用,lambda函数的左右主要是用来指定用以排序的目标。
执行结果:
reduce() 函数在 python 2 是内置函数, 从python 3 开始移到了 functools 模块。所以在使用前需要先导入,否则无法直接使用。
reduce函数的功能是,从左到右对一个序列的项逐个地应用一个有两个参数的函数,用函数的功能对序列的项逐个的进行运算,最终返回所使用的函数的结果。例如:
reduce有三个参数,分别是
function有两个参数的函数, 必需参数sequencetuple ,list ,dictionary, string等可迭代对象,必需参数initial初始值, 可选参数,默认为0
reduce的工作过程是 :在迭代sequence(tuple ,list ,dictionary, string等可迭代对象)的过程中,首先把前两个元素传给函数参数,函数加工后,然后把得到的结果和第三个元素作为两个参数传给函数参数, 函数加工后得到的结果又和第四个元素作为两个参数传给函数参数,依次类推。如果传入了initial值,那么首先传的就不是 sequence的第一个和第二个元素,而是initial值和第一个元素。经过这样的累计计算之后合并序列到一个单一返回值。
将前面的例子中的加号改为乘号,实际上就从求和的函数变为求阶乘的函数:
我们再玩一些稍微复杂一些的用法,只是简单基本的用法介绍,对新手来说,理解肯定是不够的,所以下面讲点更深入的例子,以元组、字典类型的数据序列为目标来进行操作,我们的目标是计算元组中每一个元素中对应的薪资(wage)的平均数:
也能用t实它现分组:
通过以上两个案例可以看出,简单加减示例中很少出现的初始值参数initial恰恰是实现复杂目标的最重要的点,它可以说是整个实现过程中的地基,是塑造最终结果的骨骼。
更复杂的操作就没必要使用reduce+lambdal了,可以使用一些其他的函数或者自定义来进行处理。
以上四种就是能和lambda函数结合一起使用的函数,除了reduce函数在python3中移到了 functools 模块。需要先导入模块才能使用,其他三种都是python的内置函数,可以直接使用。它们之中有一些相同点和不同点,通过总结后更方便区分和以后的使用。
相同点:
1、都是用以处理可迭代对象;
2、都可以配合lambda匿名函数进行使用;
不同点:
1、功能不同,lambda函数的作用不同
filter函数:筛选列表中所有满足条件的元素,lambda函数作为过滤列表元素的条件。关键词:筛选
map函数:根据提供的函数对指定序列做映射,lambda函数作为映射。关键词:映射
sorted函数:对列表中所有元素进行排序,lambda函数可以用于指定排序规则。关键词:排序
reduce函数:列表中两两相邻元素逐一进行运算,lambda函数用于指定运算条件。关键词:元素间运算
2、reduce函数不是内置函数
3、参数个数不同、序列和函数的传入顺序要求不同
记住不同函数的功能,最好的方法就是函数名,filter的意思为过滤器、过滤;map有提供信息(尤指其编排或组织方式)的意思,sorted则是排序,整理的意思,reduce为减少,缩小的意思。如此一看,就能很深刻的记住这几种函数的作用和用法了。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13