
在使用python清理数据时,会接触到lambda表达式配合使用的四种函数、它们分别是:filter函数、map函数、sorted函数、reduce函数。下面我们来为大家详细讲解python清理数据领域的知识。
什么是lambda表达式
lambda 表达式是一个匿名函数,lambda表达式基于数学中的λ演算得名,直接对应于其中的lambda抽象,是一个匿名函数,即没有函数名的函数。
lambda表达式常用来声明匿名函数,即没有函数名字的临时使用的小函数,常用在临时需要一个类似于函数的功能但又不想定义函数的场合。它只可以包含一个表达式,不允许包含其他复杂的语句,但在表达式中可以调用其他函数,该表达式的计算结果相当于函数的返回结果。
lambda表达式可以接受任意数量的参数,但函数只能包含一个表达式。表达式是lambda函数执行的一段代码,它可以返回任何值,返回函数对象。
lambda表达式可以返回函数对象。
在Python中,lambda的语法是唯一的。其形式如下:
我们可以有很多个参数,但是只能有一个表达式。lambda操作符不能有任何声明,它返回一个函数对象。其中,lambda是Python预留的关键字,argument_list和expression由用户自定义。
lambda函数有如下特性:
下面是一些lambda表达式的基本用法示例:
lambda表达式返回的是一个函数对象,其本质上只有一种用法,那就是定义一个lambda匿名函数。在实际中,根据这个lambda函数应用场景的不同,lambda函数的用法有很多种,其中一种就是将lambda函数作为参数传递给其他函数。
Python有少数内置函数可以接收lambda函数作为参数,进行组合使用,这也是最为常见的一种用法。典型的此类内置函数有一下这四种。filter函数:筛选列表中所有满足条件的元素,lambda函数作为过滤列表元素的条件。
filter( )函数用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,注意返回的不是列表,如果要转换为列表,可以使用 list()来转换。
该函数接收两个参数,第一个为函数,第二个为序列,filter函数的重点在于过滤,所以它必须有一个用于判断的工具,这就是function参数的函数,传入的函数返回值必须是布尔类型,序列的每个元素作为参数逐个传递给函数进行判断,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。
简单示例一:
简单示例二:
简单示例三:
map( )会根据提供的函数对指定序列做映射,即根据传入的函数逐一对序列中的元素进行计算。
该函数至少接收两个参数,第一个参数为函数function,第二个参数为可迭代对象iterable,第二个参数序列中的每一个元素调用第一个参数 function函数来进行计算,返回包含每次 function 函数返回值的可迭代对象,map( )函数和filter( )函数一样,在python3版本中返回的都是可迭代对象,有需要的话用list( )函数将其转换成列表格式。
简单示例一:
简单示例二:
map( )函数可以仅对一个序列进行运算,也可以输入多个序列进行并行运算,对多个序列同一位置的元素来逐步进行运算。序列不要求长度必须相同,最后返回的结果遵循木桶准则,以多个序列中长度最短的长度为准,即传入一个长度为4的序列,一个长度为7的序列,最终返回的序列长度为4。
简单示例三:
sorted( ) 函数的作用是对所有可迭代的对象进行排序操作。它和sort函数的作用类似,但它们之间还是有一些区别:
执行结果:
语法:
sorted(iterable, key=None, reverse=False)
参数说明:
返回:
重新排序后的列表,无论用什么可迭代对象进行排序,最终返回的都是列表。
简单示例一:
一维的序列无需key参数,只需要可迭代对象和reverse排序规则即可,注意,第一个参数可以默认为iterable可迭代对象,不可更改顺序,后两个可选参数传入函数时,必须包含变量名称,例如
简单示例二:
二维及以上的序列可以使用key参数传入lambda匿名函数结合使用,实现按条件排序的作用,lambda函数的左右主要是用来指定用以排序的目标。
执行结果:
reduce() 函数在 python 2 是内置函数, 从python 3 开始移到了 functools 模块。所以在使用前需要先导入,否则无法直接使用。
reduce函数的功能是,从左到右对一个序列的项逐个地应用一个有两个参数的函数,用函数的功能对序列的项逐个的进行运算,最终返回所使用的函数的结果。例如:
reduce有三个参数,分别是
function有两个参数的函数, 必需参数sequencetuple ,list ,dictionary, string等可迭代对象,必需参数initial初始值, 可选参数,默认为0
reduce的工作过程是 :在迭代sequence(tuple ,list ,dictionary, string等可迭代对象)的过程中,首先把前两个元素传给函数参数,函数加工后,然后把得到的结果和第三个元素作为两个参数传给函数参数, 函数加工后得到的结果又和第四个元素作为两个参数传给函数参数,依次类推。如果传入了initial值,那么首先传的就不是 sequence的第一个和第二个元素,而是initial值和第一个元素。经过这样的累计计算之后合并序列到一个单一返回值。
将前面的例子中的加号改为乘号,实际上就从求和的函数变为求阶乘的函数:
我们再玩一些稍微复杂一些的用法,只是简单基本的用法介绍,对新手来说,理解肯定是不够的,所以下面讲点更深入的例子,以元组、字典类型的数据序列为目标来进行操作,我们的目标是计算元组中每一个元素中对应的薪资(wage)的平均数:
也能用t实它现分组:
通过以上两个案例可以看出,简单加减示例中很少出现的初始值参数initial恰恰是实现复杂目标的最重要的点,它可以说是整个实现过程中的地基,是塑造最终结果的骨骼。
更复杂的操作就没必要使用reduce+lambdal了,可以使用一些其他的函数或者自定义来进行处理。
以上四种就是能和lambda函数结合一起使用的函数,除了reduce函数在python3中移到了 functools 模块。需要先导入模块才能使用,其他三种都是python的内置函数,可以直接使用。它们之中有一些相同点和不同点,通过总结后更方便区分和以后的使用。
相同点:
1、都是用以处理可迭代对象;
2、都可以配合lambda匿名函数进行使用;
不同点:
1、功能不同,lambda函数的作用不同
filter函数:筛选列表中所有满足条件的元素,lambda函数作为过滤列表元素的条件。关键词:筛选
map函数:根据提供的函数对指定序列做映射,lambda函数作为映射。关键词:映射
sorted函数:对列表中所有元素进行排序,lambda函数可以用于指定排序规则。关键词:排序
reduce函数:列表中两两相邻元素逐一进行运算,lambda函数用于指定运算条件。关键词:元素间运算
2、reduce函数不是内置函数
3、参数个数不同、序列和函数的传入顺序要求不同
记住不同函数的功能,最好的方法就是函数名,filter的意思为过滤器、过滤;map有提供信息(尤指其编排或组织方式)的意思,sorted则是排序,整理的意思,reduce为减少,缩小的意思。如此一看,就能很深刻的记住这几种函数的作用和用法了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10