热线电话:13121318867

登录
首页精彩阅读特征向量和特征值存在什么样的内在关系?
特征向量和特征值存在什么样的内在关系?
2020-05-20
收藏
特征向量(eigenvector),矩阵理论上一个非常重要的概念,被广泛的应用于各个领域。

数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变,该向量在此变换下缩放的比例称为其特征值(本征值)。

特征值也有翻译成本征值,特征值在微分方程里描述了状态变量的变化规律。



矩阵A当然是一个变换,然后这个变换的特殊之处是当它作用在特征向量u上的时候, u只发生了缩放变换,它的方向并没有改变,并没有旋转。

特征向量是经过了变换,这个向量可能会 scale, 但是仍旧保持其原有的方向,与特定的特征值对应。所以特征向量某种意义上展示了这个变换的‘特征’。

特征值是为两个,可以是复数,特征向量也可以包含复数(其实如果我们看3d的旋转,会更加的清楚,旋转轴就是旋转矩阵的特征向量。

wikipedia上一些常见的变换对应的特征向量如下:



从这个图当中,我们可以得到一些结论。

scaling: 特征值虽然只有一个(当然严密一点也可以说两个相等),但是对应的特征向量可以有无数个;


unequal scaling:特征值两个,特征向量两个;


rotation:特征值是为两个,可以是复数,特征向量也可以包含复数(其实如果我们看3d的旋转,会更加的清楚,旋转轴就是旋转矩阵的特征向量。);


horizontal shear:特征值一个,特征向量一个。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询