
基于python数据可视化的绘图系统matplotlib功能非常强大,按照国际惯例,写在最开始的是对要介绍对象的定义。喏,这是从维基百科搬运过来的对饼图的解释,请安心受下:
饼图,或称饼状图,是一个划分为几个扇形的圆形统计图表,用于描述量、频率或百分比之间的相对关系。在饼图中,每个扇区的弧长(以及圆心角和面积)大小为其所表示的数量的比例。这些扇区合在一起刚好是一个完全的圆形。顾名思义,这些扇区拼成了一个切开的饼形图案。
当然,文字的解释永远没有一个图来的直观:
这也是从维基百科上偷运过来的英语为母语的人口分布饼图。不客气的讲,这个图画的相当简陋,只能看出来一个大概的比例,像最后三个基本看不出来差别多有多少,所以我们在绘图的时候尽量加上数量标签,这样一眼就能看得出来差距在哪里了。
画图第一步是什么?当然是要数据啊,所有的图都是对数据的一种展现形式而已!ok,先来看下我们的数据长什么样子:
这是几个学校语数外平均成绩数据的前五行,整个数据源包含21条记录,也就是有21个学校的平均成绩信息,我们计划查看其中一个学校或者几个学校的成绩饼图。
先画一个最简单的饼图看看效果:
plt.figure(figsize=(8,8),dpi=80) #新建画布,由于饼图是原型的,所以新建画布为正方形 plt.pie(data2.iloc[0,1:] #选取数据源为第一小学的成绩
,labels=['语文','数学','英语']) #设置每一角饼的标签 plt.title('第1小学各学科成绩占比',fontsize=12); #设置饼图的标题和标题字号
效果图如下:
是不是和维基百科搬运过来的饼图很相像?还比那个多了个标题,嘿嘿…但是前边说好的要显示比例标签呢?别急,其实可以设置的内容还有不少,不止是可以设置比例标签呢!
plt.figure(figsize=(8,8),dpi=80) #新建画布 plt.pie(data2.iloc[0,1:] #选取数据源
,labels=['语文','数学','英语'] #增加标签
,autopct='%.2f%%' #设置百分比精度
,shadow=True #显示阴影,能够增加立体感
,explode=[0.03,0.03,0.03] #设置饼图各个扇区之间的间隙
,colors=['r','g','b']) #设置饼图各个扇区的颜色 plt.title('第1小学各学科成绩占比',fontsize=12);
每行代码的含义都以备注的方式解释明白了,以上只是常用的参数,当然还有一些不常用的参数并没有全都一一试验,给有好奇心的小可爱可以自行探索哈。
接下来查看效果的时间到了:
原谅我比较懒,没有探索更好看的配色,直接粗暴的用了RGB(逃走)。
一次绘制多个饼图其实对饼图没什么要求,只是需要添加几个子图而已!所谓子图是相对于我们建立的整个画布而言的,整个画布相当与一张白纸,而子图就相当于是给整张白纸进行了分区,每个分区里边放上一个完整的图形:
pic2 = plt.figure(figsize=(8,8),dpi=80) #新建画布,由于需要在画布上增加子图,所以讲新建的画布赋值一个变量名
fig1 = pic2.add_subplot(2,2,1) #第一个子图(行数,列数,本子图位置)
plt.pie(data2.iloc[0,1:] #选取数据源 第1小学各学科成绩
,labels=['语文','数学','英语']
,autopct='%.2f%%' #设置百分比精度
,shadow=True #显示阴影,增加立体感
,explode=[0.02,0.02,0.02]) #设置饼图各个扇区之间的间隙
# ,colors=['r','g','b']) #设置饼图各个扇区的颜色
plt.title('第1小学各学科成绩占比',fontsize=12)#设置子图的名称
fig2 = pic2.add_subplot(2,2,2) #第二个字图
plt.pie(data2.iloc[1,1:] #选取数据源,第2小学各学科成绩
,labels=['语文','数学','英语']
,autopct='%.2f%%' #设置百分比精度
,shadow=True #显示阴影,增加立体感
,explode=[0.02,0.02,0.02]) #设置饼图各个扇区之间的间隙
# ,colors=['r','g','b']) #设置饼图各个扇区的颜色
plt.title('第2小学各学科成绩占比',fontsize=12)
fig3 = pic2.add_subplot(2,2,3) #第二个字图
plt.pie(data2.iloc[2,1:] #选取数据源,第3小学各学科成绩
,labels=['语文','数学','英语']
,autopct='%.2f%%' #设置百分比精度
,shadow=True #显示阴影,增加立体感
,explode=[0.02,0.02,0.02]) #设置饼图各个扇区之间的间隙
# ,colors=['r','g','b']) #设置饼图各个扇区的颜色
plt.title('第3小学各学科成绩占比',fontsize=12)
fig4 = pic2.add_subplot(2,2,4) #第二个字图
plt.pie(data2.iloc[3,1:] #选取数据源,第4小学各学科成绩
,labels=['语文','数学','英语']
,autopct='%.2f%%' #设置百分比精度
,shadow=True #显示阴影,增加立体感
,explode=[0.02,0.02,0.02]) #设置饼图各个扇区之间的间隙
# ,colors=['r','g','b']) #设置饼图各个扇区的颜色
plt.title('第4小学各学科成绩占比',fontsize=12);
添加子图需要注意的是在新建画布的时候,需要给画布赋值一个变量名,方便添加子图。另外添加几个子图一般是通过子图的行数和列数来确定的,例如上边代码中是2行2列,即一共是4个子图。
效果图如下:
代码中对颜色设定的部分被注释掉了,所以这里的颜色是默认的颜色,美商高的小可爱们可以自行探索颜色的搭配。
matplotlib之饼图,你学会了吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10