动态条形图大火了一阵子,尤其是那种对比世界各国历年来的GDP或者军事实力的动态条形图,配上激动人心的音乐,眼看着中国从后往前排名不断考前,作为爱国的人,集体荣誉感爆棚的那种,真的是心潮澎湃自豪到仿佛国力的提升我也做出了不可磨灭的贡献一般(捂脸)。
虽然我没有对国力提升做出什么不可磨灭的贡献,但是我可以探索下动态条形图是怎样绘制的,应该也算是传播知识了吧(笑哭)。
先看下数据,依然是英超各球队的积分数据,制作动态条形图,对数据量要求会稍微大一些,对于有时间维度的数据来说,时间越长,能体现的变化和信息量就会越多,这里我们只选取了从2010–2019年英超各球队的积分数据,这个数据量不算大,但是不影响学习原理和实现步骤。
选取每年前十的球队进入数据集,最终的数据集长这个样子:
我们一步一步来,先绘制一个简单的条形图,比如绘制2019年排名前十球队积分的条形图,准备数据,把2019年的数据提取出来然后进行排序并选择前十名的球队数据,具体代码如下:
year = 2019 dff = (df_t[df_t["年份"].eq(year)] .sort_values(by='积分', ascending=True) .tail(10)) dff
结果:
简单解释下,这里并没有复杂的代码,都是常用的语法,除了一个df.eq(),这个方法主要是进行对比,将df中符合括号内变量要求的数据并提取出来,原始的数据中包含了从2010–2019的所有数据,这里只需要2019年的,所以通过这种方式把2019年的数据提取出来。
后边的排序语法选择升序排序,这样排在第一位的是积分最少的球队,所以要选取排名前十的球队不能用head(10),而是用tail(10),选取结尾的10行。之所以这么操作,还是由于条形图绘制过程中是从下往上画,为了条形的排序是从下往上条形越来越长,所以采用这样的操作。
来看一下上边截取出来的数据集绘制出来的条形图是什么样子的:
plt.figure(figsize=(10,6)) plt.barh(dff['球队'], dff['积分']);
ok,画出来是符合要求的条形图!
如果不设置颜色,画出来的所有条都是一个颜色,就像上边的那幅图。
为了让图形更美观,对各个球队的积分变化看起来更明显,还是要设置一下颜色。这里有两个选择,一是对排名设置颜色,即无论哪个球队是第一名,只要排到第一名就会被指定这种颜色,还有一种是给每个球队指定颜色,无论这个球队排名是多少,它的颜色都不会变。
实践证明第二种方法更复杂一点,但是更容易被接受,所以这里采用的第二种方法来设置颜色。
names = df_t10.球队.unique() #查看排名进过前十的球队都有哪些 names
返回结果一共24个球队:
array(['曼联', '切尔西', '曼城', '阿森纳', '热刺', '利物浦', '埃弗顿', '富勒姆', '阿斯顿维拉', '桑德兰', '纽卡斯尔', '西布罗姆维奇', '斯旺西', '西汉姆联', '南安普敦', '斯托克城', '水晶宫', '莱斯特', '伯恩茅斯', '西布朗', '伯恩利', '莱斯特城', '狼队', '谢菲尔德联'], dtype=object)
生成24个不同的颜色:
import matplotlib.cm as cm c = [] for i in range(len(names)): c.append(cm.nipy_spectral(float(i)/len(names))) colors1 = dict(zip(names,c)) # 每个球队对应一个颜色
由于颜色种类比较多,一一指定太费时间和精力,所以引入matplotlib.cm色谱,cm.nipy_spectral()函数,赋给它不同的浮点数数值能够生成不同的颜色。
plt.figure(figsize=(12,6)) #给不同的条形添加不同颜色的时候注意颜色列表有24中颜色,不能直接让颜色等于颜色列表 for i in range(len(dff)): plt.barh(dff['球队'].iloc[i], dff['积分'].iloc[i], color=colors1[dff['球 队'].iloc[i]],alpha = 0.5) # 在画布右方添加年份 plt.text(1, 0.4, current_year, transform=ax.transAxes, size=46, ha='right',alpha=0.5);
效果图:
其实大家都知道,所谓视频也是由一帧一帧的画面组成按照顺序播放形成视频的,而我们的动图运用的也是这个原理,所以只需把绘制条形图的代码封装成一个函数,然后重复调用这个函数在不同的数据集上绘制图形就可以实现动态展现。
fig, ax = plt.subplots(figsize=(12, 6)) #同时建立画布和子画布,没有设置默认为一个子画布 def draw_bar(year): ax.spines['right'].set_color('none') #把右边的边框颜色设置为无色,隐藏右边框 ax.spines['top'].set_color('none') #把上边的边框颜色设置为无色,隐藏上边框 ax.spines['left'].set_color('none') #把右边的边框颜色设置为无色,隐藏左边框 ax.spines['bottom'].set_color('none') #把上边的边框颜色设置为无色,隐藏下边框 #准备数据 dff = (df_t[df_t["年份"].eq(year)].sort_values(by='积分', ascending=True).tail(10)) ax.clear() #清空已存在的图像 for i in range(len(dff)): colors =cm.nipy_spectral(float(i)/len(dff)) ax.barh(dff['球队'].iloc[i], dff['积分'].iloc[i], height=0.7, color=colors1[dff['球队'].iloc[i]],alpha = 0.5) ax.text(dff['积分'].iloc[i]-3,i+0.1,dff['球队'].iloc[i]) ax.text(dff['积分'].iloc[i]-2,i-0.3,dff['积分'].iloc[i]) ax.text(1, 0.4, year, transform=ax.transAxes, color='#777777', size=46, ha='right',alpha=0.5, weight=800) ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}')) ax.xaxis.set_ticks_position('top') ax.tick_params(axis='x', colors='#777777', labelsize=12) ax.set_yticks([]) ax.margins(0, 0.01) ax.grid(which='major', axis='x', linestyle='-') ax.set_axisbelow(True) ax.text(0.2, 1.1, '2010--2019英超各球队年度积分', transform=ax.transAxes, size=20, weight=600, ha='left'); draw_bar(2019)
函数已经封装好了,接下来是激动人心实现动图的操作了,需要matplotlib中的animation模块,运用该模块中的FuncAnimation方法重复调用前边定义好的画图函数,实现动画效果:
import matplotlib.animation as animation #导入animation模块 from IPython.display import HTML #导入HTML模块 fig, ax = plt.subplots(figsize=(10, 6)) animator = animation.FuncAnimation(fig, draw_bar, frames=range(2010, 2020),interval = 600) #interval控制更迭速度,默认200毫秒 HTML(animator.to_jshtml()) #将渲染的HTML输出嵌入到iPython输出中 animator.save('yingchao.gif',writer='imagemagick') # 保存 gif 动态图
动态条形图就完活儿了,代码没有很复杂,完整的过程就最后的两段代码,前期的代码主要是分解了中间的过程,方便理解而已,有兴趣的小伙伴可以深入研究或者换个数据集看下实现效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02