京公网安备 11010802034615号
经营许可证编号:京B2-20210330
动态条形图大火了一阵子,尤其是那种对比世界各国历年来的GDP或者军事实力的动态条形图,配上激动人心的音乐,眼看着中国从后往前排名不断考前,作为爱国的人,集体荣誉感爆棚的那种,真的是心潮澎湃自豪到仿佛国力的提升我也做出了不可磨灭的贡献一般(捂脸)。
虽然我没有对国力提升做出什么不可磨灭的贡献,但是我可以探索下动态条形图是怎样绘制的,应该也算是传播知识了吧(笑哭)。
先看下数据,依然是英超各球队的积分数据,制作动态条形图,对数据量要求会稍微大一些,对于有时间维度的数据来说,时间越长,能体现的变化和信息量就会越多,这里我们只选取了从2010–2019年英超各球队的积分数据,这个数据量不算大,但是不影响学习原理和实现步骤。
选取每年前十的球队进入数据集,最终的数据集长这个样子:
我们一步一步来,先绘制一个简单的条形图,比如绘制2019年排名前十球队积分的条形图,准备数据,把2019年的数据提取出来然后进行排序并选择前十名的球队数据,具体代码如下:
year = 2019
dff = (df_t[df_t["年份"].eq(year)]
.sort_values(by='积分', ascending=True)
.tail(10))
dff
结果:
简单解释下,这里并没有复杂的代码,都是常用的语法,除了一个df.eq(),这个方法主要是进行对比,将df中符合括号内变量要求的数据并提取出来,原始的数据中包含了从2010–2019的所有数据,这里只需要2019年的,所以通过这种方式把2019年的数据提取出来。
后边的排序语法选择升序排序,这样排在第一位的是积分最少的球队,所以要选取排名前十的球队不能用head(10),而是用tail(10),选取结尾的10行。之所以这么操作,还是由于条形图绘制过程中是从下往上画,为了条形的排序是从下往上条形越来越长,所以采用这样的操作。
来看一下上边截取出来的数据集绘制出来的条形图是什么样子的:
plt.figure(figsize=(10,6)) plt.barh(dff['球队'], dff['积分']);
ok,画出来是符合要求的条形图!
如果不设置颜色,画出来的所有条都是一个颜色,就像上边的那幅图。
为了让图形更美观,对各个球队的积分变化看起来更明显,还是要设置一下颜色。这里有两个选择,一是对排名设置颜色,即无论哪个球队是第一名,只要排到第一名就会被指定这种颜色,还有一种是给每个球队指定颜色,无论这个球队排名是多少,它的颜色都不会变。
实践证明第二种方法更复杂一点,但是更容易被接受,所以这里采用的第二种方法来设置颜色。
names = df_t10.球队.unique() #查看排名进过前十的球队都有哪些 names
返回结果一共24个球队:
array(['曼联', '切尔西', '曼城', '阿森纳', '热刺', '利物浦', '埃弗顿', '富勒姆', '阿斯顿维拉',
'桑德兰', '纽卡斯尔', '西布罗姆维奇', '斯旺西', '西汉姆联', '南安普敦', '斯托克城', '水晶宫',
'莱斯特', '伯恩茅斯', '西布朗', '伯恩利', '莱斯特城', '狼队', '谢菲尔德联'], dtype=object)
生成24个不同的颜色:
import matplotlib.cm as cm c = [] for i in range(len(names)): c.append(cm.nipy_spectral(float(i)/len(names))) colors1 = dict(zip(names,c)) # 每个球队对应一个颜色
由于颜色种类比较多,一一指定太费时间和精力,所以引入matplotlib.cm色谱,cm.nipy_spectral()函数,赋给它不同的浮点数数值能够生成不同的颜色。
plt.figure(figsize=(12,6))
#给不同的条形添加不同颜色的时候注意颜色列表有24中颜色,不能直接让颜色等于颜色列表
for i in range(len(dff)):
plt.barh(dff['球队'].iloc[i], dff['积分'].iloc[i], color=colors1[dff['球
队'].iloc[i]],alpha = 0.5)
# 在画布右方添加年份
plt.text(1, 0.4, current_year, transform=ax.transAxes, size=46, ha='right',alpha=0.5);
效果图:
其实大家都知道,所谓视频也是由一帧一帧的画面组成按照顺序播放形成视频的,而我们的动图运用的也是这个原理,所以只需把绘制条形图的代码封装成一个函数,然后重复调用这个函数在不同的数据集上绘制图形就可以实现动态展现。
fig, ax = plt.subplots(figsize=(12, 6)) #同时建立画布和子画布,没有设置默认为一个子画布
def draw_bar(year):
ax.spines['right'].set_color('none') #把右边的边框颜色设置为无色,隐藏右边框
ax.spines['top'].set_color('none') #把上边的边框颜色设置为无色,隐藏上边框
ax.spines['left'].set_color('none') #把右边的边框颜色设置为无色,隐藏左边框
ax.spines['bottom'].set_color('none') #把上边的边框颜色设置为无色,隐藏下边框
#准备数据
dff = (df_t[df_t["年份"].eq(year)].sort_values(by='积分', ascending=True).tail(10))
ax.clear() #清空已存在的图像
for i in range(len(dff)):
colors =cm.nipy_spectral(float(i)/len(dff))
ax.barh(dff['球队'].iloc[i], dff['积分'].iloc[i], height=0.7, color=colors1[dff['球队'].iloc[i]],alpha = 0.5)
ax.text(dff['积分'].iloc[i]-3,i+0.1,dff['球队'].iloc[i])
ax.text(dff['积分'].iloc[i]-2,i-0.3,dff['积分'].iloc[i])
ax.text(1, 0.4, year, transform=ax.transAxes, color='#777777', size=46, ha='right',alpha=0.5, weight=800)
ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))
ax.xaxis.set_ticks_position('top')
ax.tick_params(axis='x', colors='#777777', labelsize=12)
ax.set_yticks([])
ax.margins(0, 0.01)
ax.grid(which='major', axis='x', linestyle='-')
ax.set_axisbelow(True)
ax.text(0.2, 1.1, '2010--2019英超各球队年度积分',
transform=ax.transAxes, size=20, weight=600, ha='left');
draw_bar(2019)
函数已经封装好了,接下来是激动人心实现动图的操作了,需要matplotlib中的animation模块,运用该模块中的FuncAnimation方法重复调用前边定义好的画图函数,实现动画效果:
import matplotlib.animation as animation #导入animation模块 from IPython.display import HTML #导入HTML模块 fig, ax = plt.subplots(figsize=(10, 6)) animator = animation.FuncAnimation(fig, draw_bar, frames=range(2010, 2020),interval = 600) #interval控制更迭速度,默认200毫秒 HTML(animator.to_jshtml()) #将渲染的HTML输出嵌入到iPython输出中 animator.save('yingchao.gif',writer='imagemagick') # 保存 gif 动态图
动态条形图就完活儿了,代码没有很复杂,完整的过程就最后的两段代码,前期的代码主要是分解了中间的过程,方便理解而已,有兴趣的小伙伴可以深入研究或者换个数据集看下实现效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24