两项分别由英国人工智能实验室DeepMind与由德国和希腊的研究人员进行的研究显示了AI与神经网络科学之间有着令人着迷的关系。
就像大多数科学家说的那样,我们距开发能够像人类一样有效地解决问题的人工智能还差几十年。在创造通用AI的道路上,人脑(可以说是最复杂的自然创造)是我们掌握的最佳指南。
神经科学对神经系统的研究,为大脑如何工作提供了有趣的见解,大脑是开发更好的AI系统的关键组成部分。相应地,更好的AI系统的开发可以帮助推动神经科学向前发展,并进一步释放大脑的秘密。
例如,卷积神经网络(CNN)是人工智能最新进展的关键贡献者之一,它很大程度上受到视觉皮层神经科学研究的启发。另一方面,神经科学家利用AI算法研究来自大脑的数百万个信号,并找出可能消失的模式。这两个领域密切相关,它们的协同作用产生了非常有趣的结果。
神经科学领域的最新发现表明,我们在AI方面正在做的正确的事情,以及我们做错了什么。
DeepMind的研究人员最近进行的一项研究证明,人工智能研究(至少是其中的一部分)正朝着正确的方向发展。
感谢神经科学,我们知道人类和动物学习的基本机制之一就是奖惩。积极的结果会鼓励我们重复某些任务(做运动,学习考试等),而消极的结果会阻止我们重复犯错(触摸火炉)。
俄罗斯生理学家伊凡·帕夫洛夫(Ivan Pavlov)的实验最为人所知,这种奖罚机制是训练狗在听到铃铛时会期待食物。我们还知道,多巴胺是中脑产生的一种神经递质,在调节大脑的奖励功能中起着重要作用。
强化学习(RL)是人工智能研究中最热门的领域之一,它是根据大脑的奖赏/惩罚机制而大致形成的。在RL中,设置了AI代理来探索问题空间并尝试不同的操作。对于其执行的每个动作,代理都会收到数字奖励或惩罚。通过大量的试验和错误,并检查其操作的结果,AI代理开发了一种数学模型,该模型经过了优化,可以最大程度地提高奖励并避免惩罚。
最近,AI研究人员一直致力于分布增强学习以创建更好的模型。分布式RL的基本思想是使用多种因素以一系列乐观和悲观的方式预测奖惩。分布强化学习对于创建对环境变化更具弹性的AI代理至关重要。
这项新的研究是由哈佛大学和DeepMind共同完成的,并于上周在《自然》杂志 上发表。该研究发现,小鼠大脑的特性与分布强化学习的特性非常相似。AI研究人员测量了大脑中的多巴胺激发率,以检查生物神经元的奖励预测率的差异。
有趣的是,在小鼠的神经系统中发现了AI科学家在分布式强化学习模型中编程的乐观和悲观机制。DeepMind的研究人员在AI实验室网站上发布的博客文章中写道:“总而言之,我们发现大脑中的多巴胺神经元每个都被调到了不同的悲观或乐观水平。“在人工强化学习系统中,这种多样化的调整会产生更丰富的训练信号,从而极大地加快了神经网络的学习速度,我们推测大脑可能出于相同的原因使用它。”
使这项发现与众不同的是,尽管AI研究通常从神经科学发现中汲取灵感,但在这种情况下,神经科学研究已经验证了AI发现。研究人员写道:“它使我们对AI研究走上正轨的信心增强,因为该算法已被我们所知道的最智能的实体:大脑使用。”
这也将为神经科学的进一步研究打下基础,这反过来将有利于AI领域发展。
尽管DeepMind的新发现证实了AI强化学习研究的成果,但柏林科学家的另一项研究却于1月初发表在《科学》杂志上,这证明我们对大脑所做的一些基本假设是完全错误的。
关于大脑结构的普遍信念是,神经元是神经系统的基本组成部分,它们是简单的积分器,用于计算其输入的加权总和。基于这种理念,设计了一种流行的机器学习算法类型:人工神经网络。
单独地,人工神经元执行非常简单的操作。它需要几个输入,将它们乘以预定义的权重,求和后再通过激活函数运行它们。但是,当多层连接成千上万(十亿)个人工神经元时,您将获得一个非常灵活的数学函数,可以解决复杂的问题,例如检测图像中的对象或记录语音。
人工神经元的多层网络(通常称为深度神经网络)是过去十年中深度学习革命背后的主要动力。
但是,对生物神经元是基本数学的“愚蠢”计算器的普遍认识过于简单。德国研究人员的最新发现后来被希腊的神经科学家证实,证明了单个神经元可以执行XOR运算,这一前提遭到了AI先驱者如Marvin Minsky和Seymour Papert的拒绝。
尽管并非所有神经元都具有这种能力,但这一发现的意义是重大的。例如,这可能意味着单个神经元可能在其内部包含一个深层网络。宾夕法尼亚大学的计算神经科学家康拉德·科尔丁(Konrad Kording)并未参与这项研究,他对《广达杂志》(Quanta Magazine)表示,这一发现可能意味着“单个神经元可能能够计算出真正复杂的功能。例如,它本身可能就能识别出一个物体。”
这对人工智能研究意味着什么?至少,这意味着我们需要重新考虑我们对神经元的建模。它可能会刺激对具有不同类型神经元的新型人工神经元结构和网络的研究。也许它可以帮助我们摆脱必须构建超大型神经网络和数据集来解决非常简单的问题的陷阱。
外语原文链接: https://bdtechtalks.com/2020/01/20/neuroscience-artificial-intelligence-synergies/
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20