两项分别由英国人工智能实验室DeepMind与由德国和希腊的研究人员进行的研究显示了AI与神经网络科学之间有着令人着迷的关系。
就像大多数科学家说的那样,我们距开发能够像人类一样有效地解决问题的人工智能还差几十年。在创造通用AI的道路上,人脑(可以说是最复杂的自然创造)是我们掌握的最佳指南。
神经科学对神经系统的研究,为大脑如何工作提供了有趣的见解,大脑是开发更好的AI系统的关键组成部分。相应地,更好的AI系统的开发可以帮助推动神经科学向前发展,并进一步释放大脑的秘密。
例如,卷积神经网络(CNN)是人工智能最新进展的关键贡献者之一,它很大程度上受到视觉皮层神经科学研究的启发。另一方面,神经科学家利用AI算法研究来自大脑的数百万个信号,并找出可能消失的模式。这两个领域密切相关,它们的协同作用产生了非常有趣的结果。
神经科学领域的最新发现表明,我们在AI方面正在做的正确的事情,以及我们做错了什么。
DeepMind的研究人员最近进行的一项研究证明,人工智能研究(至少是其中的一部分)正朝着正确的方向发展。
感谢神经科学,我们知道人类和动物学习的基本机制之一就是奖惩。积极的结果会鼓励我们重复某些任务(做运动,学习考试等),而消极的结果会阻止我们重复犯错(触摸火炉)。
俄罗斯生理学家伊凡·帕夫洛夫(Ivan Pavlov)的实验最为人所知,这种奖罚机制是训练狗在听到铃铛时会期待食物。我们还知道,多巴胺是中脑产生的一种神经递质,在调节大脑的奖励功能中起着重要作用。
强化学习(RL)是人工智能研究中最热门的领域之一,它是根据大脑的奖赏/惩罚机制而大致形成的。在RL中,设置了AI代理来探索问题空间并尝试不同的操作。对于其执行的每个动作,代理都会收到数字奖励或惩罚。通过大量的试验和错误,并检查其操作的结果,AI代理开发了一种数学模型,该模型经过了优化,可以最大程度地提高奖励并避免惩罚。
最近,AI研究人员一直致力于分布增强学习以创建更好的模型。分布式RL的基本思想是使用多种因素以一系列乐观和悲观的方式预测奖惩。分布强化学习对于创建对环境变化更具弹性的AI代理至关重要。
这项新的研究是由哈佛大学和DeepMind共同完成的,并于上周在《自然》杂志 上发表。该研究发现,小鼠大脑的特性与分布强化学习的特性非常相似。AI研究人员测量了大脑中的多巴胺激发率,以检查生物神经元的奖励预测率的差异。
有趣的是,在小鼠的神经系统中发现了AI科学家在分布式强化学习模型中编程的乐观和悲观机制。DeepMind的研究人员在AI实验室网站上发布的博客文章中写道:“总而言之,我们发现大脑中的多巴胺神经元每个都被调到了不同的悲观或乐观水平。“在人工强化学习系统中,这种多样化的调整会产生更丰富的训练信号,从而极大地加快了神经网络的学习速度,我们推测大脑可能出于相同的原因使用它。”
使这项发现与众不同的是,尽管AI研究通常从神经科学发现中汲取灵感,但在这种情况下,神经科学研究已经验证了AI发现。研究人员写道:“它使我们对AI研究走上正轨的信心增强,因为该算法已被我们所知道的最智能的实体:大脑使用。”
这也将为神经科学的进一步研究打下基础,这反过来将有利于AI领域发展。
尽管DeepMind的新发现证实了AI强化学习研究的成果,但柏林科学家的另一项研究却于1月初发表在《科学》杂志上,这证明我们对大脑所做的一些基本假设是完全错误的。
关于大脑结构的普遍信念是,神经元是神经系统的基本组成部分,它们是简单的积分器,用于计算其输入的加权总和。基于这种理念,设计了一种流行的机器学习算法类型:人工神经网络。
单独地,人工神经元执行非常简单的操作。它需要几个输入,将它们乘以预定义的权重,求和后再通过激活函数运行它们。但是,当多层连接成千上万(十亿)个人工神经元时,您将获得一个非常灵活的数学函数,可以解决复杂的问题,例如检测图像中的对象或记录语音。
人工神经元的多层网络(通常称为深度神经网络)是过去十年中深度学习革命背后的主要动力。
但是,对生物神经元是基本数学的“愚蠢”计算器的普遍认识过于简单。德国研究人员的最新发现后来被希腊的神经科学家证实,证明了单个神经元可以执行XOR运算,这一前提遭到了AI先驱者如Marvin Minsky和Seymour Papert的拒绝。
尽管并非所有神经元都具有这种能力,但这一发现的意义是重大的。例如,这可能意味着单个神经元可能在其内部包含一个深层网络。宾夕法尼亚大学的计算神经科学家康拉德·科尔丁(Konrad Kording)并未参与这项研究,他对《广达杂志》(Quanta Magazine)表示,这一发现可能意味着“单个神经元可能能够计算出真正复杂的功能。例如,它本身可能就能识别出一个物体。”
这对人工智能研究意味着什么?至少,这意味着我们需要重新考虑我们对神经元的建模。它可能会刺激对具有不同类型神经元的新型人工神经元结构和网络的研究。也许它可以帮助我们摆脱必须构建超大型神经网络和数据集来解决非常简单的问题的陷阱。
外语原文链接: https://bdtechtalks.com/2020/01/20/neuroscience-artificial-intelligence-synergies/
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10