
sns.reset_defaults() sns.set( rc={'figure.figsize':(7,5)}, style="white" # nicer layout )
如前所述,我非常喜欢分布。 直方图和核密度分布都是可视化特定变量的关键特征的有效方法。 让我们看看如何在一个图表中为单个变量或多个变量分配生成分布。
Left chart: Histogram and kernel density estimation of “Life Ladder” for Asian countries in 2018; Ri
每当我想直观地探索两个或多个变量之间的关系时,通常都会归结为某种形式的散点图和分布评估。 概念上相似的图有三种变体。 在每个图中,中心图(散点图,双变量KDE和hexbin)有助于理解两个变量之间的联合频率分布。 此外,在中心图的右边界和上边界,描绘了各个变量的边际单变量分布(作为KDE或直方图)。
sns.jointplot( x='Log GDP per capita', y='Life Ladder', data=data, kind='scatter' # or 'kde' or 'hex' )
Seaborn jointplot with scatter, bivariate kde, and hexbin in the center graph and marginal distribut
散点图是一种可视化两个变量的联合密度分布的方法。 我们可以通过添加色相来添加第三个变量,并通过添加size参数来可视化第四个变量。
sns.scatterplot( x='Log GDP per capita', y='Life Ladder', data=data[data['Year'] == 2018], hue='Continent', size='Gapminder Population' ) # both, hue and size are optional sns.despine() # prettier layout
Log GDP per capita against Life Ladder, colors based on the continent and size on population
小提琴图是箱形图和籽粒密度估计值的组合。 它起着箱形图的作用。 它显示了跨类别变量的定量数据分布,以便可以比较那些分布。
sns.set( rc={'figure.figsize':(18,6)}, style="white" ) sns.violinplot( x='Continent', y='Life Ladder', hue='Mean Log GDP per capita', data=data ) sns.despine()
Violin plot where we plot continents against Life Ladder, we use the Mean Log GDP per capita to grou
Seaborn对图在一个大网格中绘制了两个变量散点图的所有组合。 我通常感觉这有点信息过载,但是它可以帮助发现模式。
sns.set( style="white", palette="muted", color_codes=True ) sns.pairplot( data[data.Year == 2018][[ 'Life Ladder','Log GDP per capita', 'Social support','Healthy life expectancy at birth', 'Freedom to make life choices','Generosity', 'Perceptions of corruption', 'Positive affect', 'Negative affect','Confidence in national government', 'Mean Log GDP per capita' ]].dropna(), hue='Mean Log GDP per capita' )
Seaborn scatterplot grid where all selected variables a scattered against every other variable in th
对我而言,Seaborn的FacetGrid是使用Seaborn的最令人信服的论点之一,因为它使创建多图变得轻而易举。 通过对图,我们已经看到了FacetGrid的示例。 FacetGrid允许创建按变量分段的多个图表。 例如,行可以是一个变量(人均GDP类别),列可以是另一个变量(大陆)。
它确实比我个人需要更多的自定义(即使用matplotlib),但这仍然很吸引人。
FacetGrid —折线图
g = sns.FacetGrid( data.groupby(['Mean Log GDP per capita','Year','Continent'])['Life Ladder'].mean().reset_index(), row='Mean Log GDP per capita', col='Continent', margin_titles=True ) g = (g.map(plt.plot, 'Year','Life Ladder'))
Life Ladder on the Y-axis, Year on the X-axis. The grid’s columns are the continent, and the grid’s rows are the different levels of Mean Log GDP per capita. Overall things seem to be getting better for the countries with a Low Mean Log GDP per Capita in North America and the countries with a Medium or High Mean Log GDP per Capita in Europe
FacetGrid —直方图
g = sns.FacetGrid(data, col="Continent", col_wrap=3,height=4) g = (g.map(plt.hist, "Life Ladder",bins=np.arange(2,9,0.5)))
FacetGrid with a histogram of LifeLadder by continent
FacetGrid —带注释的KDE图
也可以向网格中的每个图表添加构面特定的符号。 在下面的示例中,我们添加平均值和标准偏差,并在该平均值处绘制一条垂直线(下面的代码)。
Life Ladder kernel density estimation based on the continent, annotated with a mean and standard deviation
def vertical_mean_line(x, **kwargs): plt.axvline(x.mean(), linestyle ="--", color = kwargs.get("color", "r")) txkw = dict(size=15, color = kwargs.get("color", "r")) label_x_pos_adjustment = 0.08 # this needs customization based on your data label_y_pos_adjustment = 5 # this needs customization based on your data if x.mean() < 6: # this needs customization based on your data tx = "mean: {:.2f}\n(std: {:.2f})".format(x.mean(),x.std()) plt.text(x.mean() + label_x_pos_adjustment, label_y_pos_adjustment, tx, **txkw) else: tx = "mean: {:.2f}\n (std: {:.2f})".format(x.mean(),x.std()) plt.text(x.mean() -1.4, label_y_pos_adjustment, tx, **txkw) _ = data.groupby(['Continent','Year'])['Life Ladder'].mean().reset_index() g = sns.FacetGrid(_, col="Continent", height=4, aspect=0.9, col_wrap=3, margin_titles=True) g.map(sns.kdeplot, "Life Ladder", shade=True, color='royalblue') g.map(vertical_mean_line, "Life Ladder")
FacetGrid —热图
我最喜欢的绘图类型之一是热图FacetGrid,即网格每个面中的热图。 这种类型的绘图对于在一个绘图中可视化四个维度和一个度量很有用。 该代码有点麻烦,但可以根据需要快速进行调整。 值得注意的是,这种图表需要相对大量的数据或适当的细分,因为它不能很好地处理缺失值。
Facet heatmap, visualizing on the outer rows a year range, outer columns the GDP per Capita, on the inner rows the level of perceived corruption and the inner columns the continents. We see that happiness increases towards the top right (i.e., high GDP per Capita and low perceived corruption). The effect of time is not definite, and some continents (Europe and North America) seem to be happier than others (Africa).
def draw_heatmap(data,inner_row, inner_col, outer_row, outer_col, values, vmin,vmax): sns.set(font_scale=1) fg = sns.FacetGrid( data, row=outer_row, col=outer_col, margin_titles=True ) position = left, bottom, width, height = 1.4, .2, .1, .6 cbar_ax = fg.fig.add_axes(position) fg.map_dataframe( draw_heatmap_facet, x_col=inner_col, y_col=inner_row, values=values, cbar_ax=cbar_ax, vmin=vmin, vmax=vmax ) fg.fig.subplots_adjust(right=1.3) plt.show() def draw_heatmap_facet(*args, **kwargs): data = kwargs.pop('data') x_col = kwargs.pop('x_col') y_col = kwargs.pop('y_col') values = kwargs.pop('values') d = data.pivot(index=y_col, columns=x_col, values=values) annot = round(d,4).values cmap = sns.color_palette("Blues",30) + sns.color_palette("Blues",30)[0::2] #cmap = sns.color_palette("Blues",30) sns.heatmap( d, **kwargs, annot=annot, center=0, cmap=cmap, linewidth=.5 ) # Data preparation _ = data.copy() _['Year'] = pd.cut(_['Year'],bins=[2006,2008,2012,2018]) _['GDP per Capita'] = _.groupby(['Continent','Year'])['Log GDP per capita'].transform( pd.qcut, q=3, labels=(['Low','Medium','High']) ).fillna('Low') _['Corruption'] = _.groupby(['Continent','GDP per Capita'])['Perceptions of corruption'].transform( pd.qcut, q=3, labels=(['Low','Medium','High']) ) _ = _[_['Continent'] != 'Oceania'].groupby(['Year','Continent','GDP per Capita','Corruption'])['Life Ladder'].mean().reset_index() _['Life Ladder'] = _['Life Ladder'].fillna(-10) draw_heatmap( data=_, outer_row='Corruption', outer_col='GDP per Capita', inner_row='Year', inner_col='Continent', values='Life Ladder', vmin=3, vmax=8, )
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10