我们最后来讲python另外一个非常出色的可视化工具,使用plotly创建出色的交互式图,最后,不再需要Matplotlib!
Plotly具有三个重要功能:
· 悬停:将鼠标悬停在图表上时,将弹出注释
· 交互性:无需任何其他设置即可使图表互动(例如,穿越时空的旅程)
· 漂亮的地理空间图:Plotly具有一些内置的基本地图绘制功能,但是另外,可以使用mapbox集成来生成惊人的图表。
我们通过运行fig = x。(PARAMS)然后调用fig.show()来调用绘图:
fig = px.scatter( data_frame=data[data['Year'] == 2018], x="Log GDP per capita", y="Life Ladder", size="Gapminder Population", color="Continent", hover_name="Country name", size_max=60 ) fig.show()
Plotly scatter plot, plotting Log GDP per capita against Life Ladder, where color indicates continent and size of the marker the population
fig = px.scatter( data_frame=data, x="Log GDP per capita", y="Life Ladder", animation_frame="Year", animation_group="Country name", size="Gapminder Population", color="Continent", hover_name="Country name", facet_col="Continent", size_max=45, category_orders={'Year':list(range(2007,2019))} ) fig.show()
Visualization of how the plotted data changes over the years
fig = px.bar( data, x="Continent", y="Gapminder Population", color="Mean Log GDP per capita", barmode="stack", facet_col="Year", category_orders={"Year": range(2007,2019)}, hover_name='Country name', hover_data=[ "Mean Log GDP per capita", "Gapminder Population", "Life Ladder" ] ) fig.show()
Seems like not all countries with high life expectations are happy!
fig = px.bar( data, x="Continent", y="Gapminder Population", color="Mean Log GDP per capita", barmode="stack", facet_col="Year", category_orders={"Year": range(2007,2019)}, hover_name='Country name', hover_data=[ "Mean Log GDP per capita", "Gapminder Population", "Life Ladder" ] ) fig.show()
Filtering a bar chart is easy. Not surprisingly, South Korea is among the wealthy countries in Asia.
fig = px.choropleth( data, locations="ISO3", color="Life Ladder", hover_name="Country name", animation_frame="Year") fig.show()
Map visualization of how happiness evolves over the years. Syria and Afghanistan are at the very end of the Life Ladder range (unsurprisingly)
在本文中,我们学习了如何成为真正的Python可视化高手,了解了如何在快速探索方面提高效率,以及在再次召开董事会会议时如何创建更精美的图表。 还有交互式地图,这在绘制地理空间数据时特别有用哦。
本文翻译自Fabian Bosler的文章《Learn how to create beautiful and insightful charts with Python — the Quick, the Pretty, and the Awesome》 参考https://towardsdatascience.com/plotting-with-python-c2561b8c0f1f)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30