这节我们来聊一下用户留存的话题,用户留存有多重要呢?“不留存,就去死”,听起来还是有点耸人听闻的对吧。说到留存,不得不先弄清楚用户画像,所谓“知己知彼,百战不殆!”
很多大佬们往往更关注留存这一环节,那么这一环节有什么奇妙的地方呢?由于这一章内容较多,小P给大家找到了思维导图方便大家理解:
首先,书中关于用户留存举了BranchOut的反例:从2012年1月开始,短短几个月时间里,BranchOut的总用户数增长到2500万,月活跃用户一度达到1400万,并且完成了C轮融资。就是这样一个看起来前景一片大好的社交网站,是怎么最后沦落到到处找买家贱卖的下场呢?
归根结底,就是没有注重用户的留存问题,团队把精力全部放在了用户获取上。其实这样的事情在国内我们也见过不少,很多app都有过声势浩大的阶段,但后来却逐渐消失在我们的视野中。我们去结合产品的“S”曲线就会发现,这类产品在当时巨大的用户增量面前,并不足以承担,并且很可能会对产品造成很大的负担,产品功能及各方面不够匹配这么大的用户量,一味的增长反而会加速产品走向下坡。其实,我们首先要认清一个公式:
净用户增长=新用户加入-老用户流失
这也就意味着我们的流失数最起码要与新用户数保持持平,才会实现增长。然而现实中,很多新人会被眼前的新用户数冲昏头脑,而忘记产品现有功能是否能满足大量用户基本使用需求以及是否能满足小众用户的特殊需求。所以,出现这些问题也就可以理解了。
我们再来定义下留存,女主说:衡量留存,我们推荐使用计算同一用户群不同时间的留存率(Retention rate)来绘制留存曲线(Retention curve),有时候也叫做进行同期群分析(Cohort Analysis)。简而言之,就是把同一时期加入的用户放在一起,横向追踪他们在接下来几个月、一年的时间里,是不是还持续使用这个产品,有多大比例流失了,在什么时间流失了,从而了解用户随时间变化的留存情况。在定义留存这个环节中,首先我们需要明确定义自己产品留存关键行为以及用户的天然使用周期,这样我们就可以着手绘制留存曲线图了。想要画出一个周留存曲线,只需以下四步:
1. 记录每一周首次完成关键行为的用户数,也就是激活用户数。
2. 追踪这些用户在接下来的每一周里继续完成关键行为的数量。
3. 通过前两步,计算每一周有关键行为的用户占首周激活用户数的百分比。
4. 把百分比数据画成曲线图,就是你的留存曲线了。
步骤4
那么,从这个留存曲线当中我们能看出什么呢?
横向观察时:用户的流失是不可避免的,但好的留存曲线应该是变得越来越平
纵向观察时:随着产品的改善,以及各种留存手段的帮助,后来加入的用户其留存曲线的
的斜率应该比之前加入的用户的平缓。
同样,用户留存周期也是分阶段的。
1. 新用户激活阶段:包括新用户的注册、激活流程和整体的新用户体验。这一阶段的主要目标是帮助新用户上手,快速发现产品达到Aha时刻。
2. 中期留存阶段:是指用户完成了首次关键行为之后继续熟系产品,发现更多的价值。主要目标是帮助用户形成使用习惯。
3. 长期留存阶段:这时用户对产品的使用已经非常熟悉,主要目标是让用户经常回来使用产品,感受到产品的核心价值,避免用户的流失。
4. 流失用户阶段:这一阶段是针对已经流失的用户,主要目标是让用户重新发现产品价值,唤回用户。
不同阶段,目标也不同。把握住留存的各个阶段,实操起来才会更轻松。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20