
今天我们来详细讲解下,Linux浏览文件的三种命令,它们分别是:cat、less、more!
cat命令: 一次性在终端中显示文件的所有内容
cat Facebook首席运营官桑德伯格《Lean\ In》.txt
cat命令显示出多少行呢?
参数:n 由 1 开始对所有输出的行数进行编号
cat -n Facebook首席运营官桑德伯格《Lean\ In》.txt
cat命令还可以连接多个文本的内容一起输出
cat -n hello.txt word.txt
less命令: 分页显示文件内容
less和cat最大的区别是:less命令会分一页一页地显示文件内容,cat会一次性全部显示
less Facebook首席运营官桑德伯格《Lean\ In》.txt
这时我们会看到 less命令不会一次性读取 ‘Facebook首席运营官桑德伯格《Lean\ In》.txt’ 文本里的全部内容,而是会分页读取,每一页读取内容的多少是由你的终端大小来决定的
less命令浏览文件的快捷键:
注意:这里快捷键的字母都是区分大小写的
less命令浏览文件高级快捷键的使用
“=”键:显示当前页面的内容是文件中第几行到第几行,按Enter键撤销
Facebook首席运营官桑德伯格《Lean\ In》.txt lines 5-10/287 byte 4308/171635 3% (press RETURN)
下面我们就对这段描述信息座椅详细的解释:
Facebook首席运营官桑德伯格《Lean\ In》.txt: 表示当前正在读取文件的名称
lines 5-10/287: 表示这个文本总共有287行,当前正在读取的是5-10行
byte 4308/171635: 表示文本总共有171635个字符,当前读取了4308个字符
%3: 表示当前读取的内容占了文本内容总共的 %3
h键:进入快捷键的帮助文档,按q键退出
/(斜杠):进入搜索模式
如:搜索关键字 more
要想在搜索中跳转到下一个符合的内容,可以按n键,按N键可以跳到上一个符合的内容
more命令
more命令和less命令相似,但没有less命令强大
如:more命令不能往后翻页,只能一路往前翻页
这是因为more命令是在less命令之前出现的
注:这是Facebook首席运营官桑德伯格《Lean In》的部分篇章,大家可以用这部分篇章来对cat、less命令做一次动手实操的练习,这样可以帮助大家更好的理解less命令的强大之处
I GOT PREGNANT with my first child in the summer of 2004. At the time, I was running the online sales and operations groups at Google. I had joined the company three and a half years earlier when it was an obscure start-up with a few hundred employees in a run-down office building. By my first trimester, Google had grown into a company of thousands and moved into a multibuilding campus.
My pregnancy was not easy. The typical morning sickness that often accompanies the first trimester affected me every day for nine long months. I gained almost seventy pounds, and my feet swelled two entire shoe sizes, turning into odd-shaped lumps I could see only when they were propped up on a coffee table. A particularly sensitive Google engineer announced that “Project Whale” was named after me.
One day, after a rough morning spent staring at the bottom of the toilet, I had to rush to make an important client meeting. Google was growing so quickly that parking was an ongoing problem, and the only spot I could find was quite far away. I sprinted across the parking lot, which in reality meant lumbering a bit more quickly than my absurdly slow pregnancy crawl. This only made my nausea worse, and I arrived at the meeting praying that a sales pitch was the only thing that would come out of my mouth. That night, I recounted these troubles to my husband, Dave. He pointed out that Yahoo, where he worked at the time, had designated parking for expectant mothers at the front of each building.
The next day, I marched in—or more like waddled in—to see Google founders Larry Page and Sergey Brin in their office, which was really just a large room with toys and gadgets strewn all over the floor. I found Sergey in a yoga position in the corner and announced that we needed pregnancy parking, preferably sooner rather than later. He looked up at me and agreed immediately, noting that he had never thought about it before.
To this day, I’m embarrassed that I didn’t realize that pregnant women needed reserved parking until I experienced my own aching feet. As one of Google’s most senior women, didn’t I have a special responsibility to think of this? But like Sergey, it had never occurred to me. The other pregnant women must have suffered in silence, not wanting to ask for special treatment. Or maybe they lacked the confidence or seniority to demand that the problem be fixed. Having one pregnant woman at the top—even one who looked like a whale—made the difference.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05