
今天我们来详细讲解下,Linux浏览文件的三种命令,它们分别是:cat、less、more!
cat命令: 一次性在终端中显示文件的所有内容
cat Facebook首席运营官桑德伯格《Lean\ In》.txt
cat命令显示出多少行呢?
参数:n 由 1 开始对所有输出的行数进行编号
cat -n Facebook首席运营官桑德伯格《Lean\ In》.txt
cat命令还可以连接多个文本的内容一起输出
cat -n hello.txt word.txt
less命令: 分页显示文件内容
less和cat最大的区别是:less命令会分一页一页地显示文件内容,cat会一次性全部显示
less Facebook首席运营官桑德伯格《Lean\ In》.txt
这时我们会看到 less命令不会一次性读取 ‘Facebook首席运营官桑德伯格《Lean\ In》.txt’ 文本里的全部内容,而是会分页读取,每一页读取内容的多少是由你的终端大小来决定的
less命令浏览文件的快捷键:
注意:这里快捷键的字母都是区分大小写的
less命令浏览文件高级快捷键的使用
“=”键:显示当前页面的内容是文件中第几行到第几行,按Enter键撤销
Facebook首席运营官桑德伯格《Lean\ In》.txt lines 5-10/287 byte 4308/171635 3% (press RETURN)
下面我们就对这段描述信息座椅详细的解释:
Facebook首席运营官桑德伯格《Lean\ In》.txt: 表示当前正在读取文件的名称
lines 5-10/287: 表示这个文本总共有287行,当前正在读取的是5-10行
byte 4308/171635: 表示文本总共有171635个字符,当前读取了4308个字符
%3: 表示当前读取的内容占了文本内容总共的 %3
h键:进入快捷键的帮助文档,按q键退出
/(斜杠):进入搜索模式
如:搜索关键字 more
要想在搜索中跳转到下一个符合的内容,可以按n键,按N键可以跳到上一个符合的内容
more命令
more命令和less命令相似,但没有less命令强大
如:more命令不能往后翻页,只能一路往前翻页
这是因为more命令是在less命令之前出现的
注:这是Facebook首席运营官桑德伯格《Lean In》的部分篇章,大家可以用这部分篇章来对cat、less命令做一次动手实操的练习,这样可以帮助大家更好的理解less命令的强大之处
I GOT PREGNANT with my first child in the summer of 2004. At the time, I was running the online sales and operations groups at Google. I had joined the company three and a half years earlier when it was an obscure start-up with a few hundred employees in a run-down office building. By my first trimester, Google had grown into a company of thousands and moved into a multibuilding campus.
My pregnancy was not easy. The typical morning sickness that often accompanies the first trimester affected me every day for nine long months. I gained almost seventy pounds, and my feet swelled two entire shoe sizes, turning into odd-shaped lumps I could see only when they were propped up on a coffee table. A particularly sensitive Google engineer announced that “Project Whale” was named after me.
One day, after a rough morning spent staring at the bottom of the toilet, I had to rush to make an important client meeting. Google was growing so quickly that parking was an ongoing problem, and the only spot I could find was quite far away. I sprinted across the parking lot, which in reality meant lumbering a bit more quickly than my absurdly slow pregnancy crawl. This only made my nausea worse, and I arrived at the meeting praying that a sales pitch was the only thing that would come out of my mouth. That night, I recounted these troubles to my husband, Dave. He pointed out that Yahoo, where he worked at the time, had designated parking for expectant mothers at the front of each building.
The next day, I marched in—or more like waddled in—to see Google founders Larry Page and Sergey Brin in their office, which was really just a large room with toys and gadgets strewn all over the floor. I found Sergey in a yoga position in the corner and announced that we needed pregnancy parking, preferably sooner rather than later. He looked up at me and agreed immediately, noting that he had never thought about it before.
To this day, I’m embarrassed that I didn’t realize that pregnant women needed reserved parking until I experienced my own aching feet. As one of Google’s most senior women, didn’t I have a special responsibility to think of this? But like Sergey, it had never occurred to me. The other pregnant women must have suffered in silence, not wanting to ask for special treatment. Or maybe they lacked the confidence or seniority to demand that the problem be fixed. Having one pregnant woman at the top—even one who looked like a whale—made the difference.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10