京公网安备 11010802034615号
经营许可证编号:京B2-20210330
# datetime.timedelta 时间差
t1 = datetime.datetime(2017,10,1)
print(t1)
print("")
tx = datetime.timedelta(100) # timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0)
print(tx)
print("")
t2 = t1 + tx
print(t2)
2017-10-01 00:00:00 100 days, 0:00:00 2018-01-09 00:00:00
2019-05-262019-05-26
# datetime.timedelta 时间差
t1 = datetime.datetime(2017,10,1)
print(t1)
print("")
tx = datetime.timedelta(100) # timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0)
print(tx)
print("")
t2 = t1 + tx
print(t2)
2017-10-01 00:00:00 100 days, 0:00:00 2018-01-09 00:00:00
# datetime.timedelta 时间差
t1 = datetime.datetime(2017,10,1)
print(t1)
print("")
tx = datetime.timedelta(100) # timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0)
print(tx)
print("")
t2 = t1 + tx
print(t2)
2017-10-01 00:00:00 100 days, 0:00:00 2018-01-09 00:00:00
time_list1 = ["20171019", "20181020", "bbbb", "20191021"]
t1= pd.to_datetime(time_list1, errors="ignore")
print(t1, type(t1))
print("")
t2 = pd.to_datetime(time_list1, errors="coerce")
print(t2)
Index(['20171019', '20181020', 'bbbb', '20191021'], dtype='object')pandas.core.indexes.base.index'=""> DatetimeIndex(['2017-10-19', '2018-10-20', 'NaT', '2019-10-21'], dtype='datetime64[ns]', freq=None)
2020-06-01 14:28:08.656056 2020-06-01 14:28:08.656056 2017-10-21 00:00:00
rng = pd.DatetimeIndex(["20160910", "11/06/2017", "20180821", "26/05/2019"])
print(rng)
print(type(rng))
print("")
print(rng[0], type(rng[0]))
DatetimeIndex(['2016-09-10', '2017-11-06', '2018-08-21', '2019-05-26'], dtype='datetime64[ns]', freq=None)pandas.core.indexes.datetimes.datetimeindex'=""> 2016-09-10 00:00:00 pandas._libs.tslibs.timestamps.timestamp'="">
st = pd.Series(np.random.rand(4), index=rng) # 把时间戳索引当成index print(st)
2016-09-10 0.835586 2017-11-06 0.223044 2018-08-21 0.950717 2019-05-26 0.013370 dtype: float64
st = pd.Series(np.random.rand(4), index=rng) # 把时间戳索引当成index print(st)
2016-09-10 0.835586 2017-11-06 0.223044 2018-08-21 0.950717 2019-05-26 0.013370 dtype: float64
st = pd.Series(np.random.rand(4), index=rng) # 把时间戳索引当成index print(st)
2016-09-10 0.835586 2017-11-06 0.223044 2018-08-21 0.950717 2019-05-26 0.013370 dtype: float64
t_index2 = pd.date_range(start="20181018", periods=10, name="t_index2") print(t_index2)
DatetimeIndex(['2018-10-18', '2018-10-19', '2018-10-20', '2018-10-21', '2018-10-22', '2018-10-23', '2018-10-24', '2018-10-25', '2018-10-26', '2018-10-27'], dtype='datetime64[ns]', name='t_index2', freq='D')
t_index3 = pd.date_range(end="20181018", periods=10, name="t_index3") print(t_index3)
DatetimeIndex(['2018-10-09', '2018-10-10', '2018-10-11', '2018-10-12', '2018-10-13', '2018-10-14', '2018-10-15', '2018-10-16', '2018-10-17', '2018-10-18'], dtype='datetime64[ns]', name='t_index3', freq='D')
t_index3 = pd.date_range(end="20181018", periods=10, name="t_index3") print(t_index3)
DatetimeIndex(['2018-10-09', '2018-10-10', '2018-10-11', '2018-10-12', '2018-10-13', '2018-10-14', '2018-10-15', '2018-10-16', '2018-10-17', '2018-10-18'], dtype='datetime64[ns]', name='t_index3', freq='D')
t_index3 = pd.date_range(end="20181018", periods=10, name="t_index3") print(t_index3)
DatetimeIndex(['2018-10-09', '2018-10-10', '2018-10-11', '2018-10-12', '2018-10-13', '2018-10-14', '2018-10-15', '2018-10-16', '2018-10-17', '2018-10-18'], dtype='datetime64[ns]', name='t_index3', freq='D')
t_index6 = pd.bdate_range(start="20191001", end="20191007", name="t_index6") print(t_index6)
DatetimeIndex(['2019-10-01', '2019-10-02', '2019-10-03', '2019-10-04', '2019-10-07'], dtype='datetime64[ns]', name='t_index6', freq='B')
DatetimeIndex(['2019-09-10', '2019-09-11', '2019-09-12', '2019-09-13', '2019-09-14', '2019-09-15', '2019-09-16', '2019-09-17'], dtype='datetime64[ns]', name='t_index5', freq='D')
t_index7_list= pd.date_range(start="20191001", end="20191007", name="t_index7_list")
print(t_index7_list)
print("\n")
t_index7_list= list(pd.date_range(start="20191001", end="20191007", name="t_index7_list"))
print(t_index7_list)
DatetimeIndex(['2019-10-01', '2019-10-02', '2019-10-03', '2019-10-04', '2019-10-05', '2019-10-06', '2019-10-07'], dtype='datetime64[ns]', name='t_index7_list', freq='D')
DatetimeIndex(['2019-09-10', '2019-09-11', '2019-09-12', '2019-09-13', '2019-09-14', '2019-09-15', '2019-09-16', '2019-09-17'], dtype='datetime64[ns]', name='t_index5', freq='D')
DatetimeIndex(['2019-09-11', '2019-09-12', '2019-09-13', '2019-09-14', '2019-09-15', '2019-09-16', '2019-09-17', '2019-09-18'], dtype='datetime64[ns]', name='t_index5', freq='D')
# 默认freq = 'D' 每日
pd.date_range("10/1/2019", "2019/10/7")
DatetimeIndex(['2019-10-01', '2019-10-02', '2019-10-03', '2019-10-04', '2019-10-05', '2019-10-06', '2019-10-07'], dtype='datetime64[ns]', freq='D')
# 'B' 每工作日
pd.date_range("10/01/2019", "10/07/2019", freq = "B")
DatetimeIndex(['2019-10-01', '2019-10-02', '2019-10-03', '2019-10-04', '2019-10-07'], dtype='datetime64[ns]', freq='B')
[Timestamp('2019-10-01 00:00:00', freq='D'), Timestamp('2019-10-02 00:00:00', freq='D'), Timestamp('2019-10-03 00:00:00', freq='D'), Timestamp('2019-10-04 00:00:00', freq='D'), Timestamp('2019-10-05 00:00:00', freq='D'), Timestamp('2019-10-06 00:00:00', freq='D'), Timestamp('2019-10-07 00:00:00', freq='D')]
# H 每小时
pd.date_range("10/01/2019 12:00:00", "10/02/2019 12:00:00", freq = "H")
DatetimeIndex(['2019-10-01 12:00:00', '2019-10-01 13:00:00', '2019-10-01 14:00:00', '2019-10-01 15:00:00', '2019-10-01 16:00:00', '2019-10-01 17:00:00', '2019-10-01 18:00:00', '2019-10-01 19:00:00', '2019-10-01 20:00:00', '2019-10-01 21:00:00', '2019-10-01 22:00:00', '2019-10-01 23:00:00', '2019-10-02 00:00:00', '2019-10-02 01:00:00', '2019-10-02 02:00:00', '2019-10-02 03:00:00', '2019-10-02 04:00:00', '2019-10-02 05:00:00', '2019-10-02 06:00:00', '2019-10-02 07:00:00', '2019-10-02 08:00:00', '2019-10-02 09:00:00', '2019-10-02 10:00:00', '2019-10-02 11:00:00', '2019-10-02 12:00:00'], dtype='datetime64[ns]', freq='H')
# T/MIN 每分
pd.date_range("10/01/2019 12:10:00" , "10/01/2019 12:30:00", freq = "T")
DatetimeIndex(['2019-10-01 12:10:00', '2019-10-01 12:11:00', '2019-10-01 12:12:00', '2019-10-01 12:13:00', '2019-10-01 12:14:00', '2019-10-01 12:15:00', '2019-10-01 12:16:00', '2019-10-01 12:17:00', '2019-10-01 12:18:00', '2019-10-01 12:19:00', '2019-10-01 12:20:00', '2019-10-01 12:21:00', '2019-10-01 12:22:00', '2019-10-01 12:23:00', '2019-10-01 12:24:00', '2019-10-01 12:25:00', '2019-10-01 12:26:00', '2019-10-01 12:27:00', '2019-10-01 12:28:00', '2019-10-01 12:29:00', '2019-10-01 12:30:00'], dtype='datetime64[ns]', freq='T')
# S 每秒
pd.date_range("10/01/2019", "10/01/2019 00:00:30", freq = "S")
DatetimeIndex(['2019-10-01 00:00:00', '2019-10-01 00:00:01', '2019-10-01 00:00:02', '2019-10-01 00:00:03', '2019-10-01 00:00:04', '2019-10-01 00:00:05', '2019-10-01 00:00:06', '2019-10-01 00:00:07', '2019-10-01 00:00:08', '2019-10-01 00:00:09', '2019-10-01 00:00:10', '2019-10-01 00:00:11', '2019-10-01 00:00:12', '2019-10-01 00:00:13', '2019-10-01 00:00:14', '2019-10-01 00:00:15', '2019-10-01 00:00:16', '2019-10-01 00:00:17', '2019-10-01 00:00:18', '2019-10-01 00:00:19', '2019-10-01 00:00:20', '2019-10-01 00:00:21', '2019-10-01 00:00:22', '2019-10-01 00:00:23', '2019-10-01 00:00:24', '2019-10-01 00:00:25', '2019-10-01 00:00:26', '2019-10-01 00:00:27', '2019-10-01 00:00:28', '2019-10-01 00:00:29', '2019-10-01 00:00:30'], dtype='datetime64[ns]', freq='S')
# L 每毫秒 (千分之一秒)
pd.date_range("10/01/2019", "10/01/2019 00:00:30", freq = "L")
DatetimeIndex([ '2019-10-01 00:00:00', '2019-10-01 00:00:00.001000', '2019-10-01 00:00:00.002000', '2019-10-01 00:00:00.003000', '2019-10-01 00:00:00.004000', '2019-10-01 00:00:00.005000', '2019-10-01 00:00:00.006000', '2019-10-01 00:00:00.007000', '2019-10-01 00:00:00.008000', '2019-10-01 00:00:00.009000', ... '2019-10-01 00:00:29.991000', '2019-10-01 00:00:29.992000', '2019-10-01 00:00:29.993000', '2019-10-01 00:00:29.994000', '2019-10-01 00:00:29.995000', '2019-10-01 00:00:29.996000', '2019-10-01 00:00:29.997000', '2019-10-01 00:00:29.998000', '2019-10-01 00:00:29.999000', '2019-10-01 00:00:30'], dtype='datetime64[ns]', length=30001, freq='L')
# U 每微秒 (百万分之一秒)
pd.date_range("10/01/2019", "10/01/2019 00:00:30", freq = "U") # U 每微秒 (百万分之一秒)
DatetimeIndex([ '2019-10-01 00:00:00', '2019-10-01 00:00:00.000001',
'2019-10-01 00:00:00.000002', '2019-10-01 00:00:00.000003',
'2019-10-01 00:00:00.000004', '2019-10-01 00:00:00.000005',
'2019-10-01 00:00:00.000006', '2019-10-01 00:00:00.000007',
'2019-10-01 00:00:00.000008', '2019-10-01 00:00:00.000009',
...
'2019-10-01 00:00:29.999991', '2019-10-01 00:00:29.999992',
'2019-10-01 00:00:29.999993', '2019-10-01 00:00:29.999994',
'2019-10-01 00:00:29.999995', '2019-10-01 00:00:29.999996',
'2019-10-01 00:00:29.999997', '2019-10-01 00:00:29.999998',
'2019-10-01 00:00:29.999999', '2019-10-01 00:00:30'],
dtype='datetime64[ns]', length=30000001, freq='U')
# U 每微秒 (百万分之一秒)
pd.date_range("10/01/2019", "10/01/2019 00:00:30", freq = "U") # U 每微秒 (百万分之一秒)
DatetimeIndex([ '2019-10-01 00:00:00', '2019-10-01 00:00:00.000001',
'2019-10-01 00:00:00.000002', '2019-10-01 00:00:00.000003',
'2019-10-01 00:00:00.000004', '2019-10-01 00:00:00.000005',
'2019-10-01 00:00:00.000006', '2019-10-01 00:00:00.000007',
'2019-10-01 00:00:00.000008', '2019-10-01 00:00:00.000009',
...
'2019-10-01 00:00:29.999991', '2019-10-01 00:00:29.999992',
'2019-10-01 00:00:29.999993', '2019-10-01 00:00:29.999994',
'2019-10-01 00:00:29.999995', '2019-10-01 00:00:29.999996',
'2019-10-01 00:00:29.999997', '2019-10-01 00:00:29.999998',
'2019-10-01 00:00:29.999999', '2019-10-01 00:00:30'],
dtype='datetime64[ns]', length=30000001, freq='U')
# U 每微秒 (百万分之一秒)
pd.date_range("10/01/2019", "10/01/2019 00:00:30", freq = "U") # U 每微秒 (百万分之一秒)
DatetimeIndex([ '2019-10-01 00:00:00', '2019-10-01 00:00:00.000001',
'2019-10-01 00:00:00.000002', '2019-10-01 00:00:00.000003',
'2019-10-01 00:00:00.000004', '2019-10-01 00:00:00.000005',
'2019-10-01 00:00:00.000006', '2019-10-01 00:00:00.000007',
'2019-10-01 00:00:00.000008', '2019-10-01 00:00:00.000009',
...
'2019-10-01 00:00:29.999991', '2019-10-01 00:00:29.999992',
'2019-10-01 00:00:29.999993', '2019-10-01 00:00:29.999994',
'2019-10-01 00:00:29.999995', '2019-10-01 00:00:29.999996',
'2019-10-01 00:00:29.999997', '2019-10-01 00:00:29.999998',
'2019-10-01 00:00:29.999999', '2019-10-01 00:00:30'],
dtype='datetime64[ns]', length=30000001, freq='U')
# M -- 每月最后一个日历日
pd.date_range("2019", "2020", freq = "M")
DatetimeIndex(['2019-01-31', '2019-02-28', '2019-03-31', '2019-04-30', '2019-05-31', '2019-06-30', '2019-07-31', '2019-08-31', '2019-09-30', '2019-10-31', '2019-11-30', '2019-12-31'], dtype='datetime64[ns]', freq='M')
# M -- 每月最后一个日历日
pd.date_range("2019", "2020", freq = "M")
DatetimeIndex(['2019-01-31', '2019-02-28', '2019-03-31', '2019-04-30', '2019-05-31', '2019-06-30', '2019-07-31', '2019-08-31', '2019-09-30', '2019-10-31', '2019-11-30', '2019-12-31'], dtype='datetime64[ns]', freq='M')
# M -- 每月最后一个日历日
pd.date_range("2019", "2020", freq = "M")
DatetimeIndex(['2019-01-31', '2019-02-28', '2019-03-31', '2019-04-30', '2019-05-31', '2019-06-30', '2019-07-31', '2019-08-31', '2019-09-30', '2019-10-31', '2019-11-30', '2019-12-31'], dtype='datetime64[ns]', freq='M')
# BM - 每月最后一个工作日
print(pd.date_range("2019", "2020", freq="BM"))
DatetimeIndex(['2019-01-31', '2019-02-28', '2019-03-29', '2019-04-30', '2019-05-31', '2019-06-28', '2019-07-31', '2019-08-30', '2019-09-30', '2019-10-31', '2019-11-29', '2019-12-31'], dtype='datetime64[ns]', freq='BM')
DatetimeIndex(['2019-01-31', '2019-04-30', '2019-07-31', '2019-10-31'], dtype='datetime64[ns]', freq='Q-JAN') DatetimeIndex(['2019-02-28', '2019-05-31', '2019-08-31', '2019-11-30'], dtype='datetime64[ns]', freq='Q-FEB') DatetimeIndex(['2019-03-31', '2019-06-30', '2019-09-30', '2019-12-31'], dtype='datetime64[ns]', freq='Q-MAR') DatetimeIndex(['2019-01-31', '2019-04-30', '2019-07-31', '2019-10-31'], dtype='datetime64[ns]', freq='Q-APR')
# BQ - 每个季度末最后一月的最后一个工作日
print(pd.date_range("2019", "2021", freq="BQ-JAN"))
print("")
print(pd.date_range("2019", "2021", freq="BQ-FEB"))
print("")
print(pd.date_range("2019", "2021", freq="BQ-MAR"))
print("")
print(pd.date_range("2019", "2021", freq="BQ-APR"))
DatetimeIndex(['2019-01-31', '2019-04-30', '2019-07-31', '2019-10-31', '2020-01-31', '2020-04-30', '2020-07-31', '2020-10-30'], dtype='datetime64[ns]', freq='BQ-JAN') DatetimeIndex(['2019-02-28', '2019-05-31', '2019-08-30', '2019-11-29', '2020-02-28', '2020-05-29', '2020-08-31', '2020-11-30'], dtype='datetime64[ns]', freq='BQ-FEB') DatetimeIndex(['2019-03-29', '2019-06-28', '2019-09-30', '2019-12-31', '2020-03-31', '2020-06-30', '2020-09-30', '2020-12-31'], dtype='datetime64[ns]', freq='BQ-MAR') DatetimeIndex(['2019-01-31', '2019-04-30', '2019-07-31', '2019-10-31', '2020-01-31', '2020-04-30', '2020-07-31', '2020-10-30'], dtype='datetime64[ns]', freq='BQ-APR')
# BA -- 每年指定月份的最后一个工作日
print(pd.date_range("2019", "2021", freq="BA-JAN"))
print(pd.date_range("2019", "2023", freq="BA-FEB"))
print(pd.date_range("2019", "2021", freq="BA-MAR"))
DatetimeIndex(['2019-01-31', '2020-01-31'], dtype='datetime64[ns]', freq='BA-JAN') DatetimeIndex(['2019-02-28', '2020-02-28', '2021-02-26', '2022-02-28'], dtype='datetime64[ns]', freq='BA-FEB') DatetimeIndex(['2019-03-29', '2020-03-31'], dtype='datetime64[ns]', freq='BA-MAR')
# MS -- 每月第一个日历日
pd.date_range("2019", "2020", freq="MS")
DatetimeIndex(['2019-01-01', '2019-02-01', '2019-03-01', '2019-04-01', '2019-05-01', '2019-06-01', '2019-07-01', '2019-08-01', '2019-09-01', '2019-10-01', '2019-11-01', '2019-12-01', '2020-01-01'], dtype='datetime64[ns]', freq='MS')
# QS - 每个季度末最后一月的第一个日历日
print(pd.date_range("2019", "2020", freq="QS-JAN"))
print("")
print(pd.date_range("2019", "2020", freq="QS-FEB"))
print("")
print(pd.date_range("2019", "2020", freq="QS-MAR"))
print("")
print(pd.date_range("2019", "2020", freq="QS-APR"))
DatetimeIndex(['2019-01-01', '2019-04-01', '2019-07-01', '2019-10-01', '2020-01-01'], dtype='datetime64[ns]', freq='QS-JAN') DatetimeIndex(['2019-02-01', '2019-05-01', '2019-08-01', '2019-11-01'], dtype='datetime64[ns]', freq='QS-FEB') DatetimeIndex(['2019-03-01', '2019-06-01', '2019-09-01', '2019-12-01'], dtype='datetime64[ns]', freq='QS-MAR') DatetimeIndex(['2019-01-01', '2019-04-01', '2019-07-01', '2019-10-01', '2020-01-01'], dtype='datetime64[ns]', freq='QS-APR')
# AS -- 每年指定月份的第一个日历日
print(pd.date_range("2019", "2021", freq="AS-JAN"))
print(pd.date_range("2019", "2021", freq="AS-FEB"))
print(pd.date_range("2019", "2021", freq="AS-DEC"))
DatetimeIndex(['2019-01-01', '2020-01-01', '2021-01-01'], dtype='datetime64[ns]', freq='AS-JAN') DatetimeIndex(['2019-02-01', '2020-02-01'], dtype='datetime64[ns]', freq='AS-FEB') DatetimeIndex(['2019-12-01', '2020-12-01'], dtype='datetime64[ns]', freq='AS-DEC')
# BMS -- 每月第一个工作日
print(pd.date_range("2019", "2021", freq="BMS"))
DatetimeIndex(['2019-01-01', '2019-02-01', '2019-03-01', '2019-04-01', '2019-05-01', '2019-06-03', '2019-07-01', '2019-08-01', '2019-09-02', '2019-10-01', '2019-11-01', '2019-12-02', '2020-01-01', '2020-02-03', '2020-03-02', '2020-04-01', '2020-05-01', '2020-06-01', '2020-07-01', '2020-08-03', '2020-09-01', '2020-10-01', '2020-11-02', '2020-12-01', '2021-01-01'], dtype='datetime64[ns]', freq='BMS')
# BQS - 每个季度末最后一月的第一个工作日
print(pd.date_range("2019", "2020", freq="BQS-JAN"))
print("")
print(pd.date_range("2019", "2020", freq="BQS-FEB"))
print("")
print(pd.date_range("2019", "2020", freq="BQS-MAR"))
print("")
print(pd.date_range("2019", "2020", freq="BQS-APR"))
DatetimeIndex(['2019-01-01', '2019-04-01', '2019-07-01', '2019-10-01', '2020-01-01'], dtype='datetime64[ns]', freq='BQS-JAN') DatetimeIndex(['2019-02-01', '2019-05-01', '2019-08-01', '2019-11-01'], dtype='datetime64[ns]', freq='BQS-FEB') DatetimeIndex(['2019-03-01', '2019-06-03', '2019-09-02', '2019-12-02'], dtype='datetime64[ns]', freq='BQS-MAR') DatetimeIndex(['2019-01-01', '2019-04-01', '2019-07-01', '2019-10-01', '2020-01-01'], dtype='datetime64[ns]', freq='BQS-APR')
# BAS -- 每年指定月份的第一个工作日
print(pd.date_range("2019", "2021", freq="BAS-JAN"))
print(pd.date_range("2019", "2021", freq="BAS-FEB"))
print(pd.date_range("2019", "2021", freq="BAS-DEC"))
DatetimeIndex(['2019-01-01', '2020-01-01', '2021-01-01'], dtype='datetime64[ns]', freq='BAS-JAN') DatetimeIndex(['2019-02-01', '2020-02-03'], dtype='datetime64[ns]', freq='BAS-FEB') DatetimeIndex(['2019-12-02', '2020-12-01'], dtype='datetime64[ns]', freq='BAS-DEC')
# BAS -- 每年指定月份的第一个工作日
print(pd.date_range("2019", "2021", freq="BAS-JAN"))
print(pd.date_range("2019", "2021", freq="BAS-FEB"))
print(pd.date_range("2019", "2021", freq="BAS-DEC"))
DatetimeIndex(['2019-01-01', '2020-01-01', '2021-01-01'], dtype='datetime64[ns]', freq='BAS-JAN') DatetimeIndex(['2019-02-01', '2020-02-03'], dtype='datetime64[ns]', freq='BAS-FEB') DatetimeIndex(['2019-12-02', '2020-12-01'], dtype='datetime64[ns]', freq='BAS-DEC')
# BAS -- 每年指定月份的第一个工作日
print(pd.date_range("2019", "2021", freq="BAS-JAN"))
print(pd.date_range("2019", "2021", freq="BAS-FEB"))
print(pd.date_range("2019", "2021", freq="BAS-DEC"))
DatetimeIndex(['2019-01-01', '2020-01-01', '2021-01-01'], dtype='datetime64[ns]', freq='BAS-JAN') DatetimeIndex(['2019-02-01', '2020-02-03'], dtype='datetime64[ns]', freq='BAS-FEB') DatetimeIndex(['2019-12-02', '2020-12-01'], dtype='datetime64[ns]', freq='BAS-DEC')
# 2M 每间隔2个月最后一个日历
pd.date_range("2019", "2021", freq="2M")
DatetimeIndex(['2019-01-31', '2019-03-31', '2019-05-31', '2019-07-31', '2019-09-30', '2019-11-30', '2020-01-31', '2020-03-31', '2020-05-31', '2020-07-31', '2020-09-30', '2020-11-30'], dtype='datetime64[ns]', freq='2M')
# 2h30min 间隔是2小时30分钟
pd.date_range("2019/10/1 00:00:00", "2019/10/1 12:00:00", freq="2h30min")
DatetimeIndex(['2019-10-01 00:00:00', '2019-10-01 02:30:00', '2019-10-01 05:00:00', '2019-10-01 07:30:00', '2019-10-01 10:00:00'], dtype='datetime64[ns]', freq='150T')
# 2M 每间隔2个月最后一个日历
pd.date_range("2019", "2021", freq="2M")
DatetimeIndex(['2019-01-31', '2019-03-31', '2019-05-31', '2019-07-31', '2019-09-30', '2019-11-30', '2020-01-31', '2020-03-31', '2020-05-31', '2020-07-31', '2020-09-30', '2020-11-30'], dtype='datetime64[ns]', freq='2M')
ts = pd.Series(np.random.rand(4), index=pd.date_range("2019/1/1", "2019/1/4")) print(ts) print("\n") # 这里是把D改为4H print(ts.asfreq("4H")) print("\n") # method 插值模式 ffill 用之前值填充 bfill 用之后值填充 print(ts.asfreq("4H", method="ffill")) print("\n") print(ts.asfreq("4H", method="bfill"))
2019-01-01 0.610403 2019-01-02 0.416557 2019-01-03 0.821631 2019-01-04 0.699457 Freq: D, dtype: float64
2019-01-01 00:00:00 0.610403 2019-01-01 04:00:00 NaN 2019-01-01 08:00:00 NaN 2019-01-01 12:00:00 NaN 2019-01-01 16:00:00 NaN 2019-01-01 20:00:00 NaN 2019-01-02 00:00:00 0.416557 2019-01-02 04:00:00 NaN 2019-01-02 08:00:00 NaN 2019-01-02 12:00:00 NaN 2019-01-02 16:00:00 NaN 2019-01-02 20:00:00 NaN 2019-01-03 00:00:00 0.821631 2019-01-03 04:00:00 NaN 2019-01-03 08:00:00 NaN 2019-01-03 12:00:00 NaN 2019-01-03 16:00:00 NaN 2019-01-03 20:00:00 NaN 2019-01-04 00:00:00 0.699457 Freq: 4H, dtype: float64
2019-01-01 00:00:00 0.610403 2019-01-01 04:00:00 0.610403 2019-01-01 08:00:00 0.610403 2019-01-01 12:00:00 0.610403 2019-01-01 16:00:00 0.610403 2019-01-01 20:00:00 0.610403 2019-01-02 00:00:00 0.416557 2019-01-02 04:00:00 0.416557 2019-01-02 08:00:00 0.416557 2019-01-02 12:00:00 0.416557 2019-01-02 16:00:00 0.416557 2019-01-02 20:00:00 0.416557 2019-01-03 00:00:00 0.821631 2019-01-03 04:00:00 0.821631 2019-01-03 08:00:00 0.821631 2019-01-03 12:00:00 0.821631 2019-01-03 16:00:00 0.821631 2019-01-03 20:00:00 0.821631 2019-01-04 00:00:00 0.699457 Freq: 4H, dtype: float64
2019-01-01 00:00:00 0.610403 2019-01-01 04:00:00 0.416557 2019-01-01 08:00:00 0.416557 2019-01-01 12:00:00 0.416557 2019-01-01 16:00:00 0.416557 2019-01-01 20:00:00 0.416557 2019-01-02 00:00:00 0.416557 2019-01-02 04:00:00 0.821631 2019-01-02 08:00:00 0.821631 2019-01-02 12:00:00 0.821631 2019-01-02 16:00:00 0.821631 2019-01-02 20:00:00 0.821631 2019-01-03 00:00:00 0.821631 2019-01-03 04:00:00 0.699457 2019-01-03 08:00:00 0.699457 2019-01-03 12:00:00 0.699457 2019-01-03 16:00:00 0.699457 2019-01-03 20:00:00 0.699457 2019-01-04 00:00:00 0.699457 Freq: 4H, dtype: float64
ts = pd.Series(np.random.rand(4), index=pd.date_range("2019/1/1", "2019/1/4")) print(ts) print("\n") print(ts.shift(1)) print("\n") print(ts.shift(-2)) print("\n") # 计算变化百分比 该时间戳的值与上一个时间戳的值相比 per = ts/ts.shift(1) print(per)
2019-01-01 0.197884 2019-01-02 0.403093 2019-01-03 0.208341 2019-01-04 0.330873 Freq: D, dtype: float64
2019-01-01 NaN 2019-01-02 0.197884 2019-01-03 0.403093 2019-01-04 0.208341 Freq: D, dtype: float64
2019-01-01 0.208341 2019-01-02 0.330873 2019-01-03 NaN 2019-01-04 NaN Freq: D, dtype: float64
2019-01-01 NaN 2019-01-02 2.037017 2019-01-03 0.516855 2019-01-04 1.588134 Freq: D, dtype: float64
print(ts)
print("\n")
print(ts.shift(2, freq="D")) # 按天
print("\n")
print(ts.shift(2, freq="T")) # 按分钟
2019-01-01 0.197884 2019-01-02 0.403093 2019-01-03 0.208341 2019-01-04 0.330873 Freq: D, dtype: float64
2019-01-03 0.197884 2019-01-04 0.403093 2019-01-05 0.208341 2019-01-06 0.330873 Freq: D, dtype: float64
2019-01-01 00:02:00 0.197884 2019-01-02 00:02:00 0.403093 2019-01-03 00:02:00 0.208341 2019-01-04 00:02:00 0.330873 Freq: D, dtype: float64
(1)获取更多优质内容及精彩资讯,可前往:https://www.cda.cn/?seo
(2)了解更多数据领域的优质课程:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31