
以下使用scikit-learn中数据集进行分享。
如果选用随机森林作为最终的模型,那么找出它的最佳参数可能有1000多种组合的可能,你可以使用使用穷尽的网格搜索(Exhaustive Grid Seaarch)方法,但时间成本将会很高(运行很久...),或者使用随机搜索(Randomized Search)方法,仅分析超参数集合中的子集合。
该例子以手写数据集为例,使用支持向量机的方法对数据进行建模,然后调用scikit-learn中validation_surve方法将模型交叉验证的结果进行可视化。需要注意的是,在使用validation_curve方法时,只能验证一个超参数与模型训练集和验证集得分的关系(即二维的可视化),而不能实现多参数与得分间关系的可视化。以下搜索的参数是gamma,需要给定参数范围,用param_range进行传递,评分策略用scoring参数进行传递。其代码示例如下所示:
print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.svm import SVC from sklearn.model_selection import validation_curve X, y = load_digits(return_X_y=True) param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve with SVM") plt.xlabel(r"$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) lw = 2 plt.semilogx(param_range, train_scores_mean, label="Training score", color="darkorange", lw=lw) plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="darkorange", lw=lw) plt.semilogx(param_range, test_scores_mean, label="Cross-validation score", color="navy", lw=lw) plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="navy", lw=lw) plt.legend(loc="best") plt.show();
代码中:
X, y = load_digits(return_X_y=True) # 等价于 digits = load_digits() X_digits = digits.data y_digits = digits.target
以下是支持向量机的验证曲线,调节的超参数gamma共有5个值,每一个点的分数是五折交叉验证(cv=5)的均值。
当想看模型多个超参数与模型评分之间的关系时,使用scikit-learn中validation curve就难以实现,因此可以考虑绘制三维坐标图。
主要用plotly的库绘制3D Scatter(3d散点图)。以下的例子使用scikit-learn中的莺尾花的数据集(iris)。以下例子选用随机森林模型(RandomForestRegressor),利用scikit-learn中的GridSearchCV方法调试最佳超参(tuning hyper-parameters),分别设置超参数"n_estimators","max_features","min_samples_split"的参数范围,详见代码如下:
import numpy as np from sklearn.model_selection import validation_curve from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestRegressor from plotly.offline import iplot from plotly.graph_objs as go model = RandomForestRegressor(n_jobs=-1, random_state=2, verbose=2) grid = {'n_estimators': [10,110,200], 'max_features': [0.05, 0.07, 0.09, 0.11, 0.13], 'min_samples_split': [2, 3, 5, 8]} rf_gridsearch = GridSearchCV(estimator=model, param_grid=grid, n_jobs=4, cv=5, verbose=2, return_train_score=True) rf_gridsearch.fit(X, y) # and after some hours... df_gridsearch = pd.DataFrame(rf_gridsearch.cv_results_) trace = go.Scatter3d( x=df_gridsearch['param_max_features'], y=df_gridsearch['param_n_estimators'], z=df_gridsearch['param_min_samples_split'], mode='markers', marker=dict( # size=df_gridsearch.mean_fit_time ** (1 / 3), size = 10, color=df_gridsearch.mean_test_score, opacity=0.99, colorscale='Viridis', colorbar=dict(title = 'Test score'), line=dict(color='rgb(140, 140, 170)'), ), text=df_gridsearch.Text, hoverinfo='text' ) data = [trace] layout = go.Layout( title='3D visualization of the grid search results', margin=dict( l=30, r=30, b=30, t=30 ), scene = dict( xaxis = dict( title='max_features', nticks=10 ), yaxis = dict( title='n_estimators', ), zaxis = dict( title='min_samples_split', ), ), ) fig = go.Figure(data=data, layout=layout) iplot(fig)
其运行结果如果,是一个三维散点图(3D Scatter)。
可以看到颜色越浅,分数越高。n_estimators(子估计器)越多,分数越高,max_features的变化对模型分数的影响较小,在图中看不到变化,min_samples_split的个数并不是越高越好,但与模型分数并不呈单调关系,在min_samples_split取2时(此时,其它条件不变),模型分数最高。
除了使用scikit-learn中validation curve绘制超参数与得分的可视化,还可以利用seaborn库中heatmap方法来实现两个超参数之间的关系图,如下代码示例:
import seaborn as sns title = '''Maximum R2 score on test set VS max_features, min_samples_split''' sns.heatmap(max_scores.mean_test_score, annot=True, fmt='.4g'); plt.title(title); plt.savefig("heatmap_test.png", dpi = 300);
import seaborn as sns title = '''Maximum R2 score on train set VS max_features, min_samples_split''' sns.heatmap(max_scores.mean_train_score, annot=True, fmt='.4g'); plt.title(title); plt.savefig("heatmap_train.png", dpi = 300);
max_features和min_samples与模型得分关系的可视化如下图所示(分别为网格搜索中测试集和训练集的得分):
由于一般人很难迅速的在大量数据中找到隐藏的关系,因此,可以考虑绘图,将数据关系以图表的形式,清晰的显现出来。
综上,当关注单个超参数的学习曲线时,可以使用scikit-learn中validation curve,找到拐点,作为模型的最佳参数。
当关注两个超参数的共同变化对模型分数的影响时,可以使用seaborn库中的heatmap方法,制作“热图”,以找到超参数协同变化对分数影响的趋势。
当关注三个参数的协同变化与模型得分的关系时,可以使用poltly库中的iplot和go方法,绘制3d散点图(3D Scatter),将其协同变化对模型分数的影响展现在高维图中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08