
以下使用scikit-learn中数据集进行分享。
如果选用随机森林作为最终的模型,那么找出它的最佳参数可能有1000多种组合的可能,你可以使用使用穷尽的网格搜索(Exhaustive Grid Seaarch)方法,但时间成本将会很高(运行很久...),或者使用随机搜索(Randomized Search)方法,仅分析超参数集合中的子集合。
该例子以手写数据集为例,使用支持向量机的方法对数据进行建模,然后调用scikit-learn中validation_surve方法将模型交叉验证的结果进行可视化。需要注意的是,在使用validation_curve方法时,只能验证一个超参数与模型训练集和验证集得分的关系(即二维的可视化),而不能实现多参数与得分间关系的可视化。以下搜索的参数是gamma,需要给定参数范围,用param_range进行传递,评分策略用scoring参数进行传递。其代码示例如下所示:
print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.svm import SVC from sklearn.model_selection import validation_curve X, y = load_digits(return_X_y=True) param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve with SVM") plt.xlabel(r"$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) lw = 2 plt.semilogx(param_range, train_scores_mean, label="Training score", color="darkorange", lw=lw) plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="darkorange", lw=lw) plt.semilogx(param_range, test_scores_mean, label="Cross-validation score", color="navy", lw=lw) plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="navy", lw=lw) plt.legend(loc="best") plt.show();
代码中:
X, y = load_digits(return_X_y=True) # 等价于 digits = load_digits() X_digits = digits.data y_digits = digits.target
以下是支持向量机的验证曲线,调节的超参数gamma共有5个值,每一个点的分数是五折交叉验证(cv=5)的均值。
当想看模型多个超参数与模型评分之间的关系时,使用scikit-learn中validation curve就难以实现,因此可以考虑绘制三维坐标图。
主要用plotly的库绘制3D Scatter(3d散点图)。以下的例子使用scikit-learn中的莺尾花的数据集(iris)。以下例子选用随机森林模型(RandomForestRegressor),利用scikit-learn中的GridSearchCV方法调试最佳超参(tuning hyper-parameters),分别设置超参数"n_estimators","max_features","min_samples_split"的参数范围,详见代码如下:
import numpy as np from sklearn.model_selection import validation_curve from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestRegressor from plotly.offline import iplot from plotly.graph_objs as go model = RandomForestRegressor(n_jobs=-1, random_state=2, verbose=2) grid = {'n_estimators': [10,110,200], 'max_features': [0.05, 0.07, 0.09, 0.11, 0.13], 'min_samples_split': [2, 3, 5, 8]} rf_gridsearch = GridSearchCV(estimator=model, param_grid=grid, n_jobs=4, cv=5, verbose=2, return_train_score=True) rf_gridsearch.fit(X, y) # and after some hours... df_gridsearch = pd.DataFrame(rf_gridsearch.cv_results_) trace = go.Scatter3d( x=df_gridsearch['param_max_features'], y=df_gridsearch['param_n_estimators'], z=df_gridsearch['param_min_samples_split'], mode='markers', marker=dict( # size=df_gridsearch.mean_fit_time ** (1 / 3), size = 10, color=df_gridsearch.mean_test_score, opacity=0.99, colorscale='Viridis', colorbar=dict(title = 'Test score'), line=dict(color='rgb(140, 140, 170)'), ), text=df_gridsearch.Text, hoverinfo='text' ) data = [trace] layout = go.Layout( title='3D visualization of the grid search results', margin=dict( l=30, r=30, b=30, t=30 ), scene = dict( xaxis = dict( title='max_features', nticks=10 ), yaxis = dict( title='n_estimators', ), zaxis = dict( title='min_samples_split', ), ), ) fig = go.Figure(data=data, layout=layout) iplot(fig)
其运行结果如果,是一个三维散点图(3D Scatter)。
可以看到颜色越浅,分数越高。n_estimators(子估计器)越多,分数越高,max_features的变化对模型分数的影响较小,在图中看不到变化,min_samples_split的个数并不是越高越好,但与模型分数并不呈单调关系,在min_samples_split取2时(此时,其它条件不变),模型分数最高。
除了使用scikit-learn中validation curve绘制超参数与得分的可视化,还可以利用seaborn库中heatmap方法来实现两个超参数之间的关系图,如下代码示例:
import seaborn as sns title = '''Maximum R2 score on test set VS max_features, min_samples_split''' sns.heatmap(max_scores.mean_test_score, annot=True, fmt='.4g'); plt.title(title); plt.savefig("heatmap_test.png", dpi = 300);
import seaborn as sns title = '''Maximum R2 score on train set VS max_features, min_samples_split''' sns.heatmap(max_scores.mean_train_score, annot=True, fmt='.4g'); plt.title(title); plt.savefig("heatmap_train.png", dpi = 300);
max_features和min_samples与模型得分关系的可视化如下图所示(分别为网格搜索中测试集和训练集的得分):
由于一般人很难迅速的在大量数据中找到隐藏的关系,因此,可以考虑绘图,将数据关系以图表的形式,清晰的显现出来。
综上,当关注单个超参数的学习曲线时,可以使用scikit-learn中validation curve,找到拐点,作为模型的最佳参数。
当关注两个超参数的共同变化对模型分数的影响时,可以使用seaborn库中的heatmap方法,制作“热图”,以找到超参数协同变化对分数影响的趋势。
当关注三个参数的协同变化与模型得分的关系时,可以使用poltly库中的iplot和go方法,绘制3d散点图(3D Scatter),将其协同变化对模型分数的影响展现在高维图中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
全球第一!上交AI智能体炼成Kaggle特级大师登顶OpenAI MLE-bench 编辑:KingHZ 好困 【新智元导读】刚刚,由上海交通大学人 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24