通过Google用户搜索频率来统计排名的PYPL排行榜显示,Python份额高达29.88%,稳居第一,并且猛增4.1%,同时成为增长势头最好的语言。
PYPL排行榜
另据圈内知名网站Stack Overflow的数据显示,其实早在前年6月,Python月活用户已超越了Java、JavaScript成为第一。
同时,Python凭借强大功能和接地气的可读性,跻身为各行各业的新宠儿。据《2020年职场学习趋势报告》显示,Python成为了职场人关注的TOP1新技能。
▲图片来源:Udemy
未来,Python或将成为你进入某个企业或行业的门槛,很多人留言给小编想知道怎么更好、更快的学习这门语言兼技能。
为此,小编整理了些好书推荐给大家,从零基础探索到实战开发应有尽有,希望能帮到大家!
01基础书籍:《Python编程》
豆瓣评分:9.1分
推荐理由:架构非常漂亮,针对所有层次的Python读者而作的入门书,完美描绘了Python的“景象”,没有教科书式的分章节阐释语法,没有太复杂的概念延伸。
适读人群:零基础、小白读者。
02入门秘籍:《零基础入门学习Python》
豆瓣评分:8.7分
推荐理由:与B站小甲鱼视频配套书籍,适合小白入门的好书,不完全局限于Python,其他编程入门也非常适合,由浅入深,在普及概念的同时,逐渐加深大家对Python的认知。
适读人群:零基础、刚入门的读者。
03经典好书:《利用Python进行数据分析》
豆瓣评分:8.6分
推荐理由:书中列举了大量具体的科学计算及数据分析的实践案例,被誉为“未来几年Python领域技术计算权威指南”。你将学会灵活运用各种Python库,高效解决各种数据分析问题。
适读人群:刚接触Python的分析人员、刚接触科学计算的Python程序员等。
04实用宝典:《Python网络数据采集》
豆瓣评分:7.7分
推荐理由:从原理到实战,介绍了如何用Python从网络服务器请求信息、对服务器的响应进行基本处理、自动化手段与网站进行交互等网络数据采集基本原理,及如何使用网络爬虫测试网站、自动化处理、如何通过更多的方式接入网络等实际操作。
适读人群:对Python网络数据采集、网站爬虫感兴趣的朋友。
05兴趣读物:《Python数据挖掘入门与实践》
豆瓣评分:7.7分
推荐理由:本书为数据挖掘入门读物,作者本身具备为多个行业提供数据挖掘和数据分析解决方案的丰富经验,循序渐进,带你轻松踏上数据挖掘之旅。
适读人群:对Python数据挖掘感兴趣者。
06实战指南《Python数据可视化编程实战》
豆瓣评分:7.2分
推荐理由:本书介绍了Python数据可视化最流行的库,用60+种方法呈现出美观的数据可视化效果,让读者从头开始了解数据、数据格式、数据可视化,并学会使用Python可视化数据。
适读人群:了解Python基础,对数据可视化感兴趣的读者。
07爬虫至宝:《Python 3网络爬虫开发实战》
豆瓣评分:9.0分
推荐理由:作者专业水平极高,内容详尽且涉及面广,通过多个案例介绍了不同场景下如何实现数据爬取,通篇干货,无一点水分。
适读人群:适合有一定Python基础,或有开发经验想转爬虫方向的读者。
以上几本好书,
大家可根据基础和兴趣,
选择读本进行学习!
如果想系统学Python,
可咨询CDA相关课程!
01课程背景
企业想要在竞争激烈的市场中胜出,决策速度和反馈效率尤为重要。据调查,75%的企业在面临拟定策略时,常常无法获得实时且有根据的决策信息。什么样的数据、要透过什么样的方法,才能快速且实时的转变成决策时有用的信息,这是现代企业最迫切且不可避免的问题。
Python无论是软件和游戏开发、人工智能领域,还是职场所需的技能,如:网络爬虫、数据清洗、数据分析、数据可视化、办公自动化、自动化运营监控等领域,表现力都十分强劲。
02课程介绍
《Python数据分析集训课程》针对时间充裕、零基础的专科、本科在校生,以及在职&欲转行从事数据分析的工作人员提供3个月全脱产周末集训,毕业可推荐相关工作。
从入门基础到数据清洗,从爬虫到数据可视化、机器学习算法等内容,让你彻底搞定Python。
不仅如此,课程还会结合互联网金融、电信、银行、医疗、交通等行业的实际案例,帮助学员建立整套的数据分析和机器学习思路,使学员所学更符合企业要求。
03学成技能
1) 掌握数据科学领域最受欢迎的编程语言-python;
2) 会使用python和pandas库进行数据清洗和预处理;
3) 实现Python爬虫获取网络数据;
4) 学会matplotlib、seaborn进行初级可视化;
6) 能构建机器学习算法进行分类、预测和聚类模型;
7) 具备Python数据分析的整体思路,可针对业务做出模型最优化选择;
8) 善用机器学习解决用户画像、精准营销、风险管理等商业问题;
9) 活学活用机器学习实操电商、金融、电信、医药等行业的真实项目案例。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21