如果说最近最热门的综艺,那《乘风破浪的姐姐》(下文简称《姐姐》)可谓实至名归。30位出道多年的姐姐辈女艺人,一个个风格各异、个性鲜明。她们将通过合宿生活与舞台竞演,最终选出5位组成逆龄女团。
《乘风破浪的姐姐》就这样突然定档、突然播出、播出前无宣发的情况下爆了,一经播出就抢占各大热搜榜。
今天,我们带大家就用
来盘一盘这些
主要从以下几点展开:
乘风破浪的姐姐?NO!是兴风作浪的姑奶奶
出道时长十年起,这些姐姐们都有谁?
豆瓣8.3分,姐姐们的实力妥妥的
Python分析9万条弹幕,谁才是真正的C位?
01乘风破浪的姐姐?
NO!是兴风作浪的姑奶奶
既然是选最特别的女团,哪些人参加自然是关注的焦点。宁静、伊能静、钟丽缇、张雨绮、万茜、黄圣依…光是听到这些选手的名字就让人太期待了!
姐姐们很“任性”
不同于一般的女团选秀,漂亮妹妹们都得听从节目组的安排,而这次的姐姐们普遍很“不服管教”,毕竟都是在自己领域出道多年的资深前辈,她们非常有底气,知道自己想要什么。
节目组让做自我介绍,宁静霸气的回复:“还要介绍我是谁?那我这几十年不是白干了?”
节目组导演让伊能静挡一下膝盖,伊能静说:“这是裤子,我挡不了。你配合我一下,别让我配合你们”。
问万茜为何来参加节目,万茜回答:“经纪人逼我来的”。这也太真性情了吧,简直不是乘风破浪的姐姐,而是兴风作浪的姑奶奶们呀。
端水大师——黄晓明
这些姐姐们,也让在中餐厅里“我不要你觉得 我要我觉得”的霸道总裁黄教主秒变暖心的小明同学——“我不要你觉得,我要您觉得”人送称号端水大师,满满的求生欲。
凭实力挨骂——杜华
在点评环节中,作为评审之一杜华也是各种凭实力挨骂。依然以评选20多岁女团的刻板标准评价姐姐们,让不少观众都看得满头问号,越看越气。
02出道时长十年起,唱跳演样样精通
姐姐们到底有多强?
下面让我们看到数据部分。我们搜集了百度百科和维基百科的选手数据。
姐姐们年龄分布
先看到年龄分布,可以看到29-33这个年龄段的姐姐最多共有11位,占比36.67%。其次是34-37岁,共10位,占比33.33%。
姐姐们都来自哪儿?
然后是地区分布,姐姐们都来自哪里呢?其中来自湖南和上海的最多,各有五位。阿朵、万茜、刘芸、沈梦辰、孟佳都是我们湖南湘妹子。然后四川、辽宁、山东的各两位。
姐姐们都是哪些职业
在职业方面呢,我们可以看到,她们大多数演员和歌手出身,艺人中身兼数职的情况比较普遍,30人中至少有17人身兼多职,其中13人既是演员、也是歌手。
初舞台得分的关键因素
《乘风破浪的姐姐》初评分数由个人特质、成团潜力、声乐表现力和舞台表现构成,每项25分,总分100分。
我们通过Python计算数值型变量之间的pearson相关系数。对于系数r的取值,根据经验可将相关程度分为以下几种情况,|r|>=0.8时,可视为高相关,0.5<=|r|<0.8.可视为中度相关,0.3<=|r|<0.5时,可视为低度相关,|r|<0.3.可视为不相关。根据相关系数数值,在95%的置信程度水平情况下:
控制其他影响因素的情况下,个人特质打分对初舞台分数的影响最大。
初评舞台分数和年龄、出道年数没有显著相关关系。
年龄和个人特质、成团潜力的分数间存在低度负相关关系,年龄越大,个人特质和成团潜力的得分也就越低;
个人特质和成团潜力的打分之间存在高度正相关,即两者得分存在高则同高,低则同低的情况。
03豆瓣8.3分,姐姐们的实力妥妥的
目前这部综艺在豆瓣的评分为8.3分,很不错的成绩,已有7万2千余人进行评价。
豆瓣总体评分分布
看到具体评分分布,给出四星的最多,为38.2%;其次是5星 占比25%。看来观众普遍还是十分认可姐姐们的表现的。
短评词云图
可以看到词云主要围绕的是"姐姐"、"节目"、"女团"展开。其中在需选手中宁静、万茜被提到的频率最高。
当然也有不少吐槽的点,大家的吐槽主要集中在:
评委杜华:不公平;30+的女性岁月积淀了魅力,评审却按照20岁女团的标准来;给丁当打分真是要气炸。
黄晓明:从霸道总裁秒怂变小明,让人感觉尴尬不已
节目组:场景布置令人寒酸,摄影差,灯光差,布景差。
也有吐槽选手的
黄圣依:等黄圣依淘汰了我再改成五星,谢谢。
04Python分析9万条弹幕
谁才是真正的C位一姐?
我们统计了芒果tv第一期的弹幕数据,共94575条。
下面展示芒果Tv弹幕爬虫部分代码,分析部分代码暂略。数据获取的具体思路如下:
分析网页,弹幕数据是动态加载的,因此通过Chrome浏览器进行抓包分析并获取真实的URL请求地址;
使用selenium请求网页数据;
使用正则表达式re将文本中的HTML提取出来,使用json进行解析;
使用pandas进行数据的保存。
1. 弹幕在哪里找?
打开《乘风破浪的姐姐》选取一集,观看我们要抓取的弹幕,可以看出弹幕是在视频播放之后才滚动加载的,所以我们可以判断视频是通过JS异步加载的。
按照经验,我们切换到network-XHR下面查看,如下图所示,很容易发现了弹幕请求的地址:
https://bullet-ws.hitv.com/bullet/2020/06/21/104556/8337559/0.json
其中:2020/06/21代表日期,104556和8337559参数每集不一样,通过抓包获取即可。
2. 获取并解析数据
具体代码如下:
# 导入包
import pandas as pd
import time
import re
import json
from selenium import webdriver
# 打开Chrome(需配置webdriver)
browser = webdriver.Chrome()
def get_mgtv_danmu(month_num, day_num, num1. num2):
step = 1
df_all = pd.DataFrame()
while True:
try:
# 第一集URL
danmu_url = 'https://bullet-ws.hitv.com/bullet/2020/{}/{}/{}/{}/{}.json'.format(month_num, day_num, num1. num2. step)
# 打印进度
print('正在获取第{}页的信息'.format(step))
step += 1
# 获取弹幕
browser.get(danmu_url)
# 休眠3秒
time.sleep(3)
# 提取数据
pattern1 = re.compile(r'
')
pattern2 = re.compile(r'')
data1 = re.sub(pattern1. '', browser.page_source)
data2 = re.sub(pattern2. '', data1)
# 解析数据
js_data = json.loads(data2)
# 获取数据
all_data = js_data['data']['items']
# id
danmu_id = [i.get('id') for i in all_data]
# uname
uname = [i.get('uname') for i in all_data]
# 内容
content = [i.get('content') for i in all_data]
# 时间
danmu_time = [i.get('time') for i in all_data]
# 点赞
up_count = [i.get('v2_up_count') for i in all_data]
# 分钟
danmu_minites = step-1
# 保存数据
df_one = pd.DataFrame({
'danmu_id': danmu_id,
'uname': uname,
'content': content,
'danmu_time': danmu_time,
'up_count': up_count,
'danmu_minites': danmu_minites
})
# 循环追加
df_all = df_all.append(df_one, ignore_index=True)
except Exception as e:
print(e)
print('没有此页面, 爬虫结束')
break
return df_all
if __name__ == '__main__':
#
df_1 = get_mgtv_danmu(month_num='06', day_num='21', num1=104556. num2=8337559)
获取的数据以数据表的形式存储,如下所示:
df.head()
03 结论部分
选手弹幕热度排名
在排名数据上,占据前四位的分别是宁静、万茜、吴昕和张雨绮。
下面,分别看到她们的个人弹幕词云图。
宁静-弹幕词云
喜欢宁静的,都喜欢她那种强大的大姐大气场,感觉静姐这哪里是来出道当女团的,明明是来选妃的。
万茜-弹幕词云
再看到万茜,淡雅的性格配上努力勤奋换来的过硬实力,在节目里,万茜也堪称人气王,除了观众爱她,姐姐们也都爱她。关于她的弹幕都是各种"喜欢"、"可爱"、"性格圈粉"等等。
吴昕-弹幕词云
吴昕这次在节目中给了人眼前一亮的感觉,不再是快乐家族中没啥台词的小透明,从用心准备的节目,到谈吐性格都让人感觉十分舒服,非常圈粉。
张雨绮-弹幕词云
最后再看到张雨绮,她真的是反差萌担当了,以为是高冷霸总,结果却是个可爱憨憨,从赛前采访就开始搞笑。带来的节目是《粉红色的回忆》,理由是这是自己唯一能唱完的歌,也是十分可爱了。
结语:
这么多个性十足的姐姐们真是让人爱了爱了,特别是《乘风破浪的姐姐》的开场旁白,非常让人印象深刻:
三十而励!三十而立!三十而骊!
30岁以后,人生的见证者越来越少,但还可以自我见证!
30岁以后,所有的可能性不断褪却,但还可以越过时间,越过自己!
不要轻易用年龄定义自己,只要有追逐梦想的心,无论什么年龄段都有属于自己的精彩!
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20