文章来源: 数据分析与统计学之美
作者:黄伟呢
目录
1.scipy库中各分布对应的方法
from scipy import stats # 正态分布 stats.norm # 卡方分布 stats.chi2 # t分布 stats.t # F分布 stats.f
2.stats库中各分布的常用方法及其功能
对于正态分布:
stats.norm.cdf(α,均值,方差);
stats.norm.pdf(α,均值,方差);
stats.norm.isf(α,均值,方差);
对于t分布:
stats.t.cdf(α,自由度);
stats.t.pdf(α,自由度);
stats.t.isf(α,自由度);
对于F分布:
stats.f.cdf(α,自由度1.自由度2);
stats.f.pdf(α,自由度1.自由度2);
stats.f.isf(α,自由度1.自由度2);
一个简单的案例说明:
# 对于正态分布 stats.norm.cdf(0.5.2.3) stats.norm.pdf(0.5.2.3) stats.norm.isf(0.05.2.3) # 对于t分布 stats.t.cdf(0.5.10) stats.t.pdf(0.5.10) stats.t.isf(0.0005.45)
结果如下:
3.正态分布的概率密度函数及其图象
1)正态分布的概率密度函数及其图象
x = np.linspace(-5.5.100000) y = stats.norm.pdf(x,0.1) plt.plot(x,y,c="red") plt.title('正态分布的概率密度函数') plt.tight_layout() plt.savefig("正态分布的概率密度函数",dpi=300)
结果如下:
4.卡方分布的概率密度函数及其图象
1)卡方分布的概率密度函数及其图象
2)python绘制卡方分布的概率密度函数图象
x = np.linspace(0.100.100000) color = ["blue","green","darkgrey","darkblue","orange"] for i in range(10.51.10): y=stats.chi2.pdf(x,df=i) plt.plot(x,y,c=color[int((i-10)/10)]) plt.title('卡方分布') plt.tight_layout() plt.savefig(" 布的概率密度函数",dpi=300)
结果如下:
总结:从图中可以看出,随着自由度的增加,卡方分布的概率密度曲线趋于对称。当自由度n -> +∞的时候,卡方分布的极限分布就是正态分布。
5.t分布的概率密度函数及其图象
1)t分布的概率密度函数及其图象
2)python绘制t分布的概率密度函数图象
x = np.linspace(-5.5.100000) y = stats.t.pdf(x_t,2) plt.plot(x,y,c="orange") plt.title('t分布的概率密度函数') plt.tight_layout() plt.savefig("t分布的概率密度函数",dpi=300)
结果如下:
x_norm = np.linspace(-5.5.100000) y_norm = stats.norm.pdf(x_norm,0.1) plt.plot(x_norm,y_norm,c="black") color = ["green","darkblue","orange"] x_t = np.linspace(-5.5.100000) for i in range(1.4.1): y_t = stats.t.pdf(x_t,i) plt.plot(x_t,y_t,c=color[int(i-1)]) plt.title('t分布和正态分布的概率密度函数对比图') plt.tight_layout() plt.savefig("t分布和正态分布的概率密度函数对比图",dpi=300)
结果如下:
总结:从图中可以看出,t分布的概率密度函数和正态分布的概率密度函数都是偶函数(左右对称的)。t分布随着自由度的增加,就越来越接近正态分布,即t分布的极限分布也是正态分布。
6.F分布的概率密度函数及其图象
1)F分布的概率密度函数及其图象
x = np.linspace(-1.8.100000) y1 = stats.f.pdf(x,1.10) y2 = stats.f.pdf(x,5.10) y3 = stats.f.pdf(x,10.10) plt.plot(x,y1) plt.plot(x,y2) plt.plot(x,y3) plt.ylim(0.1) plt.title('F分布的概率密度函数') plt.tight_layout() plt.savefig("F分布的概率密度函数",dpi=300)
结果如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19