相信大家在机器学习中,一定常见到;SVC,NvSVC,LinearSVC,今天我们就来看看这三者的区别。
SVC(C-Support Vector Classification):
支持向量分类,基于libsvm实现的,数据拟合的时间复杂度是数据样本的二次方,这使得他很难扩展到10000个数据集,当输入是多类别时(SVM最初是处理二分类问题的),通过一对一的方案解决,例如:
SVC参数解释 (1)C: 目标函数的惩罚系数C,用来平衡分类间隔margin和错分样本的,default C = 1.0; (2)kernel:参数选择有RBF, Linear, Poly, Sigmoid, 默认的是"RBF"; (3)degree:if you choose 'Poly' in param 2, this is effective, degree决定了多项式的最高次幂; (4)gamma:核函数的系数('Poly', 'RBF' and 'Sigmoid'), 默认是gamma = 1 / n_features; (5)coef0:核函数中的独立项,'RBF' and 'Poly'有效; (6)probablity: 可能性估计是否使用(true or false); (7)shrinking:是否进行启发式; (8)tol(default = 1e - 3): svm结束标准的精度; (9)cache_size: 制定训练所需要的内存(以MB为单位); (10)class_weight: 每个类所占据的权重,不同的类设置不同的惩罚参数C, 缺省的话自适应; (11)verbose: 跟多线程有关,不大明白啥意思具体; (12)max_iter: 最大迭代次数,default = 1, if max_iter = -1, no limited; (13)decision_function_shape : ‘ovo’ 一对一, ‘ovr’ 多对多 or None 无, default=None (14)random_state :用于概率估计的数据重排时的伪随机数生成器的种子。 ps:7,8,9一般不考虑。 from sklearn.svm import SVC import numpy as np X= np.array([[-1,-1],[-2,-1],[1,1],[2,1]]) y = np.array([1,1,2,2]) clf = SVC() clf.fit(X,y) print clf.fit(X,y) print clf.predict([[-0.8,-1]])
NuSVC(Nu-Support Vector Classification.):
核支持向量分类,和SVC类似,也是基于libsvm实现的,但不同的是通过一个参数空值支持向量的个数
NuSVC参数 nu:训练误差的一个上界和支持向量的分数的下界。应在间隔(0,1 ]。 其余同SVC ''' import numpy as np X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) from sklearn.svm import NuSVC clf = NuSVC() clf.fit(X, y) print clf.fit(X,y) print(clf.predict([[-0.8, -1]]))
LinearSVC(Linear Support Vector Classification):
线性支持向量分类,类似于SVC,但是其使用的核函数是”linear“上边介绍的两种是按照brf(径向基函数计算的,其实现也不是基于LIBSVM,所以它具有更大的灵活性在选择处罚和损失函数时,而且可以适应更大的数据集,它支持密集和稀疏的输入是通过一对一的方式解决的
LinearSVC 参数解释
C:目标函数的惩罚系数C,用来平衡分类间隔margin和错分样本的,default C = 1.0;
loss :指定损失函数
penalty :
dual :选择算法来解决对偶或原始优化问题。当n_samples > n_features 时dual=false。
tol :(default = 1e - 3): svm结束标准的精度;
multi_class:如果y输出类别包含多类,用来确定多类策略, ovr表示一对多,“crammer_singer”优化所有类别的一个共同的目标
如果选择“crammer_singer”,损失、惩罚和优化将会被被忽略。
fit_intercept :
intercept_scaling :
class_weight :对于每一个类别i设置惩罚系数C = class_weight[i]*C,如果不给出,权重自动调整为 n_samples / (n_classes * np.bincount(y))
verbose:跟多线程有关,不大明白啥意思具体
from sklearn.svm import LinearSVC
X=[[0],[1],[2],[3]]
Y = [0,1,2,3]
clf = LinearSVC(decision_function_shape='ovo') #ovo为一对一
clf.fit(X,Y)
print clf.fit(X,Y)
dec = clf.decision_function([[1]]) #返回的是样本距离超平面的距离
print dec
clf.decision_function_shape = "ovr"
dec =clf.decision_function([1]) #返回的是样本距离超平面的距离
print dec
#预测
print clf.predict([1])</span>
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20