前面小编给大家简单介绍过拟合和欠拟合时,提到了一个概念:学习曲线,我们通过学习曲线能够很清晰的判别出模型现在说出的状态是欠拟合还是过拟合,下面小编具体整理了学习曲线的相关内容,希望对大家有所帮助。
学习曲线(learning curve)是不同训练集大小,模型在训练集和验证集上的得分变化曲线。横坐标为·样本数,纵坐标为训练和交叉验证集上的得分(如准确率)。
模型在新数据上的表现如何,都能清晰地在展现在学习去线上,我们也能通过这些表现,进而判断模型是否方差偏高或者偏差过高,以及增大训练集是否可以减小过拟合。
如图所示:
(1)当训练集和测试集的误差收敛但却很高时,为高偏差。
左上图中训练集和验证集上的曲线能够收敛,但偏差很高,训练集和验证集上准确率相差很大,却都很差。这种情况下模型对已知数据和未知数据都不能进行准确的预测,很可能是欠拟合。
方法:
增加模型参数,采用更复杂的模型,减小正则项。
注意:此时通过增加数据量是不起作用的。
(2)当训练集和测试集上误差之间有大的差距时,为高方差。
当训练集的准确率比其他独立数据集上的测试结果的准确率要高时,一般都是过拟合。
右上图中,训练集和验证集的准确率差距很大,这种情况下,模型能够很好的拟合已知数据,但是泛化能力不足,属于高方差,很可能是过拟合。
方法:
增大训练集,降低模型复杂度,增大正则项,或者通过特征选择减少特征数。
(3)右下方图,也是最理想情况:找到偏差和方差都很小的状态,就是收敛而且误差较小。
学习曲线的具体操作:
len(X_train) 个训练样本,训练出 len(X_train) 个模型,第一次使用一个样本训练出第一个模型,第二次使用两个样本训练出第二个模型,… ,第 len(X_train) 次使用 len(X_train) 个样本训练出最后一个模型;
每个模型对于训练这个模型所使用的部分训练数据集的预测值:y_train_predict = 模型.predict(X_train[ : i ]);
每个模型对于训练这个模型所使用的部分训练数据集的均方误差:mean_squared_error(y_train[ : i ], y_train_predict);
每个模型对于整个测试数据集的预测值:y_test_predict = 模型.predict(X_test)
每个模型对于整个测试数据集的预测的均方误差:mean_squared_error(y_test, y_test_predict);
绘制每次训练模型所用的样本数量与该模型对应的部分训练数据集的均方误差的平方根的关系曲线:plt.plot([i for i in range(1. len(X_train)+1)],np.sqrt(train_score), label=“train”)
绘制每次训练模型所用的样本数量与该模型对应的测试数据集的预测的均方误差的关系曲线:plt.plot([i for i in range(1. len(X_train)+1)],np.sqrt(test_score), label=“test”)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31