作者:张良均 谭立云 刘名军 江建明
来源:大数据DT(ID:hzdashuju)
内容摘编自《Python数据分析与挖掘实战》(第2版)
导读:数据质量分析是数据挖掘中数据准备过程的重要一环,是数据预处理的前提,也是数据挖掘分析结论有效性和准确性的基础。没有可信的数据,数据挖掘构建的模型将是空中楼阁。
数据质量分析的主要任务是检查原始数据中是否存在脏数据。脏数据一般是指不符合要求以及不能直接进行相应分析的数据。在常见的数据挖掘工作中,脏数据包括:缺失值、异常值、不一致的值、重复数据及含有特殊符号(如#、¥、*)的数据。
本文将主要对数据中的缺失值、异常值和一致性进行分析。
01 缺失值分析
数据的缺失主要包括记录的缺失和记录中某个字段信息的缺失,两者都会造成分析结果不准确。下面从缺失值产生的原因及影响等方面展开分析。
1. 缺失值产生的原因
缺失值产生的原因主要有以下3点:
有些信息暂时无法获取,或者获取信息的代价太大。
有些信息是被遗漏的。可能是因为输入时认为该信息不重要、忘记填写或对数据理解错误等一些人为因素而遗漏,也可能是由于数据采集设备故障、存储介质故障、传输媒体故障等非人为原因而丢失。
属性值不存在。在某些情况下,缺失值并不意味着数据有错误。对一些对象来说某些属性值是不存在的,如一个未婚者的配偶姓名、一个儿童的固定收入等。
2. 缺失值的影响
缺失值会产生以下的影响:
数据挖掘建模将丢失大量的有用信息。
数据挖掘模型所表现出的不确定性更加显著,模型中蕴含的规律更难把握。
包含空值的数据会使建模过程陷入混乱,导致不可靠的输出。
3. 缺失值的分析
对缺失值的分析主要从以下两方面进行:
使用简单的统计分析,可以得到含有缺失值的属性的个数以及每个属性的未缺失数、缺失数与缺失率等。
对于缺失值的处理,从总体上来说分为删除存在缺失值的记录、对可能值进行插补和不处理3种情况。
02 异常值分析
异常值分析是检验数据是否有录入错误,是否含有不合常理的数据。忽视异常值的存在是十分危险的,不加剔除地将异常值放入数据的计算分析过程中,会对结果造成不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。
异常值是指样本中的个别值,其数值明显偏离其他的观测值。异常值也称为离群点,异常值分析也称为离群点分析。
1. 简单统计量分析
在进行异常值分析时,可以先对变量做一个描述性统计,进而查看哪些数据是不合理的。最常用的统计量是最大值和最小值,用来判断这个变量的取值是否超出了合理范围。如客户年龄的最大值为199岁,则判断该变量的取值存在异常。
2. 3σ原则
如果数据服从正态分布,在3σ原则下,异常值被定义为一组测定值中与平均值的偏差超过3倍标准差的值。在正态分布的假设下,距离平均值3σ之外的值出现的概率为P(|x-μ|>3σ)≤0.003.属于极个别的小概率事件。
如果数据不服从正态分布,也可以用远离平均值的标准差倍数来描述。
3. 箱型图分析
箱型图提供了识别异常值的一个标准:异常值通常被定义为小于QL -1.5IQR或大于QU +1.5IQR的值。
QL称为下四分位数,表示全部观察值中有四分之一的数据取值比它小;
QU称为上四分位数,表示全部观察值中有四分之一的数据取值比它大;
IQR称为四分位数间距,是上四分位数QU与下四分位数QL之差,其间包含了全部观察值的一半。
箱型图依据实际数据绘制,对数据没有任何限制性要求,如服从某种特定的分布形式,它只是真实直观地表现数据分布的本来面貌;另一方面,箱型图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的鲁棒性:多达25%的数据可以变得任意远而不会严重扰动四分位数,所以异常值不能对这个标准施加影响。
由此可见,箱型图识别异常值的结果比较客观,在识别异常值方面有一定的优越性,如图3-1所示。
▲图3-1 箱型图检测异常值
餐饮系统中的销量数据可能出现缺失值和异常值,例如表3-1中数据所示。
▲表3-1 餐饮日销额数据示例
分析餐饮系统日销额数据可以发现,其中有部分数据是缺失的,但是如果数据记录和属性较多,使用人工分辨的方法就不切实际,所以这里需要编写程序来检测出含有缺失值的记录和属性以及缺失率个数和缺失率等。
在Python的pandas库中,只需要读入数据,然后使用describe()方法即可查看数据的基本情况,如代码清单3-1所示。
代码清单3-1 使用describe()方法查看数据的基本情况
import pandas as pd
catering_sale = '../data/catering_sale.xls' # 餐饮数据
data = pd.read_excel(catering_sale, index_col='日期')
# 读取数据,指定“日期”列为索引列
print(data.describe())
代码清单3-1的运行结果如下:
本文摘编自《Python数据分析与挖掘实战》(第2版) 销量
count 200.000000
mean 2755.214700
std 751.029772
min 22.000000
25% 2451.975000
50% 2655.850000
75% 3026.125000
max 9106.440000
其中count是非空值数,通过len(data)可以知道数据记录为201条,因此缺失值数为1.另外,提供的基本参数还有平均值(mean)、标准差(std)、最小值(min)、最大值(max)以及1/4、1/2、3/4分位数(25%、50%、75%)。
更直观地展示这些数据并且可以检测异常值的方法是使用箱型图。其Python检测代码如代码清单3-2所示。
代码清单3-2 餐饮日销额数据异常值检测
import matplotlib.pyplot as plt# 导入图像库
plt.rcParams['font.sans-serif'] = ['SimHei']# 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.figure() # 建立图像
p = data.boxplot(return_type='dict') # 画箱型图,直接使用DataFrame的方法
x = p['fliers'][0].get_xdata() # 'flies'即为异常值的标签
y = p['fliers'][0].get_ydata()
y.sort() # 从小到大排序,该方法直接改变原对象
'''
用annotate添加注释
其中有些相近的点,注释会出现重叠,难以看清,需要一些技巧来控制
以下参数都是经过调试的,需要具体问题具体调试
'''
for i in range(len(x)):
if i>0:
plt.annotate(y[i], xy=(x[i],y[i]), xytext=(x[i]+0.05 -0.8/(y[i]-y[i-1]), y[i]))
else:
plt.annotate(y[i], xy=(x[i],y[i]), xytext=(x[i]+0.08.y[i]))
plt.show() # 展示箱型图
运行代码清单3-2.可以得到图3-2所示的箱型图。
▲图3-2 异常值检测箱型图
从图3-2可以看出,箱型图中超过上下界的7个日销售额数据可能为异常值。结合具体业务可以把865.0、4060.3、4065.2归为正常值,将22.0、51.0、60.0、6607.4、9106.44归为异常值。最后确定过滤规则为日销额在400元以下或5000元以上则属于异常数据,编写过滤程序,进行后续处理。
03 一致性分析
数据不一致性是指数据的矛盾性、不相容性。直接对不一致的数据进行挖掘,可能会产生与实际相违背的挖掘结果。
在数据挖掘过程中,不一致数据的产生主要发生在数据集成的过程中,可能是由于被挖掘数据来自于不同的数据源、对于重复存放的数据未能进行一致性更新造成的。
例如,两张表中都存储了用户的电话号码,但在用户的电话号码发生改变时只更新了一张表中的数据,那么这两张表中就有了不一致的数据。
本文摘编自《Python数据分析与挖掘实战》(第2版),经出版方授权发布。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16