数据可视化能够很好地展示我们数据分析的结果,对于平常工作中,一份酷炫的可视化图表也能成为我们在工作汇报时的加分项,可是很多小伙伴对于怎样制作吸引人眼球可视化图表却不知晓,今天小编终于为大家找到了集中好看的力导向图,桑基图、树图、弦图的制作方法,特来分享给大家。
以下文章来源于: AI入门学习公众号
作者:伍正祥
给大家分享4种很厉害的图,基于R语言networkD3包实现,学会了可以大大提高可视化水平,R语言实现非常简单,几行代码就搞定,先看图。
1、力导向图(force Network)
2、桑基图(Sankey diagrams)
3、辐射状网络图(Radial networks)
4、弦图(chord Diagram)
下面一步步实现其中的每个图
#工作空间设置
setwd("C:/Users/wuzhengxiang/Desktop/networkD3")
#包加载
library(networkD3)
#http://christophergandrud.github.io/networkD3/#simple
1、力导向图(force Network)
1)简单网络图
#创建数据
src = c("A", "A", "A", "A", "B", "B", "C", "C", "D",'I')
target = c("B", "C", "D", "J", "E", "F", "G", "H", "I",'A')
networkData = data.frame(src, target)
#直接一个函数即可画出简单图,下面第一个图
simpleNetwork(networkData)
#换个颜色和字体大小,下面第二个图
simpleNetwork(networkData,nodeColour = "#FF69B4",fontSize = 12)
2)复杂网络图
#载入数据
data(MisLinks)
data(MisNodes)
#创建一个简单的力图
forceNetwork(Links = MisLinks, Nodes = MisNodes, Source = "source", Target = "target", Value = "value", NodeID = "name",Group = "group", opacity = 1, zoom = F, bounded = T)
# 当鼠标点击变大大的图
MyClickScript = 'd3.select(this).select("circle").transition().duration(750).attr("r", 30)'
forceNetwork(Links = MisLinks, Nodes = MisNodes, Source = "source",Target = "target", Value = "value", NodeID = "name",Group = "group", opacity = 1, zoom = F, bounded = T,
clickAction = MyClickScript)
# 节点大小赋值
forceNetwork(Links = MisLinks, Nodes = MisNodes, Source = "source",Target = "target", Value = "value", NodeID = "name", Nodesize = 'size', radiusCalculation = "d.nodesize",
Group = "group", opacity = 1, legend = T, bounded = F)
2、桑基图(Sankey diagrams)
URL <- 'https://raw.githubusercontent.com/christophergandrud/d3Network/sankey/JSONdata/energy.json'
Energy <- jsonlite::fromJSON(URL)
# Plot
sankeyNetwork(Links = Energy$links, Nodes = Energy$nodes, Source = "source",Target = "target", Value = "value", NodeID = "name",fontSize = 12, nodeWidth = 30 )
#动态
#静态
3、树状图 (Tree networks)
1)radialNetwork
Flare <- jsonlite::fromJSON(
"https://gist.githubusercontent.com/mbostock/4063550/raw/a05a94858375bd0ae023f6950a2b13fac5127637/flare.json",simplifyDataFrame = FALSE)
hc <- hclust(dist(USArrests), "ave")
radialNetwork(List = Flare, fontSize = 10, opacity = 0.9, margin=0)
radialNetwork(as.radialNetwork(hc))
2)其他类型的树图(不会翻译,弯的树图?)
diagonalNetwork(List = Flare, fontSize = 10, opacity = 0.9, margin=0)
diagonalNetwork(as.radialNetwork(hc), height = 700, margin = 50)
3)dendroNetwork(不会翻译,直的树图?)
hc <- hclust(dist(USArrests), "ave")
dendroNetwork(hc, height = 600)
dendroNetwork(hc, treeOrientation = "vertical")
dendroNetwork(hc, height = 600, linkType = "diagonal")
dendroNetwork(hc, treeOrientation = "vertical", linkType = "diagonal")
dendroNetwork(hc, textColour = c("red", "green", "orange")[cutree(hc, 3)],height = 600)
dendroNetwork(hc, textColour = c("red", "green", "orange")[cutree(hc, 3)], treeOrientation = "vertical")
4、弦图(chordDiagram)
hairColourData = matrix(c(11975, 1951, 8010, 1013,5871, 10048, 16145, 990,8916, 2060, 8090, 940, 2868, 6171, 8045, 6907), nrow = 4)
chordNetwork(hairColourData, width = 500, height = 500,colourScale = c("#000000", "#FFDD89", "#957244", "#F26223"))
#保存为html文件saveNetwork
library(magrittr)
simpleNetwork(networkData) %>% saveNetwork(file = 'Net1.html')
forceNetwork(Links = MisLinks, Nodes = MisNodes, Source = "source",Target = "target", Value = "value", NodeID = "name",Nodesize = 'size', radiusCalculation = " Math.sqrt(d.nodesize)+6",Group = "group", opacity = 1, legend = T, bounded = T) %>%
saveNetwork(file = 'forceNetwork_01.html')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29