协同过滤推荐算法是诞生时间最早,而且应用广泛的,著名的推荐算法。其最主要的功能进行是预测和推荐。协同过滤推荐算法可以通过对用户历史行为数据的挖掘,从而发现用户的偏好,并且基于不同的偏好,将用户划分为不同的群组,并推荐品味相似的商品。基于用户的协同过滤算法user-based collaboratIve filtering,是协同过滤推荐算法的极为重要的一个分类,今天小编主要给大家分享基于用户的协同过滤算法的原理和实现。
一、基于用户的协同过滤算法概念
基于用户(user-based)的协同过滤算法是通过,挖掘用户的历史行为数据,发现用户对商品或内容的偏好,并对这些偏好进行度量和打分。之后根据不同用户对相同商品或内容的态度以及偏好程度,来计算用户之间的相似度关系。基于用户的协同过滤,主要计算的是用户与用户之间的相似度,只需要找出相似用户喜欢的物品,并预测出目标用户对对应物品的评分,就能够找到评分最高的物品推荐给用户,这样能够挖掘用户的隐藏属性。
二、基于用户的协同过滤算法原理
基于用户的协同过滤算法主要包括以下两个步骤:
(1) 找到与目标用户兴趣相似的用户集合。
(2) 找到此集合中的用户感兴趣的,并且目标用户没有接触过的的物品推荐给目标用户。
基于用户User-CF算法的假设是目标用户和其他用户的兴趣、偏好相似,那么他们喜欢的东西都应该也相似,就是常说的人以群分。
基于用户的协同过滤算法适用于用户较少、用户个性化兴趣不太显著的情况,这样,在推荐过程中用户新的行为不一定会导致推荐结果的变化,但是如果用户过多,那么计算用户相似矩阵的代价就会太大。并且这一算法不能解决新用户进来的冷启动问题,新物品进来却可以较快地进行推荐。
三、算法实现
1.计算用户相似度
user-item: movieId 1 2 3 4 5 6 7 8 userId 1 3.5 2.0 NaN 4.5 5.0 1.5 2.5 2.0 2 2.0 3.5 4.0 NaN 2.0 3.5 NaN 3.0 3 5.0 1.0 1.0 3.0 5.0 1.0 NaN NaN 4 3.0 4.0 4.5 NaN 3.0 4.5 4.0 2.0 5 NaN 4.0 1.0 4.0 NaN NaN 4.0 1.0 6 NaN 4.5 4.0 5.0 5.0 4.5 4.0 4.0 7 5.0 2.0 NaN 3.0 5.0 4.0 5.0 NaN 8 3.0 NaN NaN 5.0 4.0 2.5 3.0 4.0 # 构建共同的评分向量 def build_xy(user_id1, user_id2): bool_array = df.loc[user_id1].notnull() & df.loc[user_id2].notnull() return df.loc[user_id1, bool_array], df.loc[user_id2, bool_array] #如此用户评分矩阵中用户1,和用户2的共同评分向量是 movieId 1 3.5 2 2.0 5 5.0 6 1.5 8 2.0 Name: 1, dtype: float64, movieId 1 2.0 2 3.5 5 2.0 6 3.5 8 3.0 Name: 2, dtype: float64) # 皮尔逊相关系数 def pearson(user_id1, user_id2): x, y = build_xy(user_id1, user_id2) mean1, mean2 = x.mean(), y.mean() # 分母 denominator = (sum((x-mean1)**2)*sum((y-mean2)**2))**0.5 try: value = sum((x - mean1) * (y - mean2)) / denominator except ZeroDivisionError: value = 0 return value
2.找到相似度最高的用户并进行推荐:
# 计算最相似的邻居 def computeNearestNeighbor(user_id, k=3): return df.drop(user_id).index.to_series().apply(pearson, args=(user_id,)).nlargest(k) #与用户3相似的前3个用户 userId 1 0.819782 6 0.801784 7 0.766965 Name: userId, dtype: float64 #推荐 def recommend(user_id): # 找到最相似的用户id nearest_user_id = computeNearestNeighbor(user_id).index[0] print('最相似用户ID:') print nearest_user_id # 找出邻居评价过、但自己未曾评价的项目 # 结果:index是项目名称,values是评分 return df.loc[nearest_user_id, df.loc[user_id].isnull() & df.loc[nearest_user_id].notnull()].sort_values() #对用户3进行推荐结果 最相似用户ID: 1 movieId 8 2.0 7 2.5 Name: 1, dtype: float64
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30