京公网安备 11010802034615号
经营许可证编号:京B2-20210330
协同过滤推荐算法是诞生时间最早,而且应用广泛的,著名的推荐算法。其最主要的功能进行是预测和推荐。协同过滤推荐算法可以通过对用户历史行为数据的挖掘,从而发现用户的偏好,并且基于不同的偏好,将用户划分为不同的群组,并推荐品味相似的商品。基于用户的协同过滤算法user-based collaboratIve filtering,是协同过滤推荐算法的极为重要的一个分类,今天小编主要给大家分享基于用户的协同过滤算法的原理和实现。
一、基于用户的协同过滤算法概念
基于用户(user-based)的协同过滤算法是通过,挖掘用户的历史行为数据,发现用户对商品或内容的偏好,并对这些偏好进行度量和打分。之后根据不同用户对相同商品或内容的态度以及偏好程度,来计算用户之间的相似度关系。基于用户的协同过滤,主要计算的是用户与用户之间的相似度,只需要找出相似用户喜欢的物品,并预测出目标用户对对应物品的评分,就能够找到评分最高的物品推荐给用户,这样能够挖掘用户的隐藏属性。
二、基于用户的协同过滤算法原理
基于用户的协同过滤算法主要包括以下两个步骤:
(1) 找到与目标用户兴趣相似的用户集合。
(2) 找到此集合中的用户感兴趣的,并且目标用户没有接触过的的物品推荐给目标用户。
基于用户User-CF算法的假设是目标用户和其他用户的兴趣、偏好相似,那么他们喜欢的东西都应该也相似,就是常说的人以群分。
基于用户的协同过滤算法适用于用户较少、用户个性化兴趣不太显著的情况,这样,在推荐过程中用户新的行为不一定会导致推荐结果的变化,但是如果用户过多,那么计算用户相似矩阵的代价就会太大。并且这一算法不能解决新用户进来的冷启动问题,新物品进来却可以较快地进行推荐。
三、算法实现
1.计算用户相似度
user-item:
movieId 1 2 3 4 5 6 7 8
userId
1 3.5 2.0 NaN 4.5 5.0 1.5 2.5 2.0
2 2.0 3.5 4.0 NaN 2.0 3.5 NaN 3.0
3 5.0 1.0 1.0 3.0 5.0 1.0 NaN NaN
4 3.0 4.0 4.5 NaN 3.0 4.5 4.0 2.0
5 NaN 4.0 1.0 4.0 NaN NaN 4.0 1.0
6 NaN 4.5 4.0 5.0 5.0 4.5 4.0 4.0
7 5.0 2.0 NaN 3.0 5.0 4.0 5.0 NaN
8 3.0 NaN NaN 5.0 4.0 2.5 3.0 4.0
# 构建共同的评分向量
def build_xy(user_id1, user_id2):
bool_array = df.loc[user_id1].notnull() & df.loc[user_id2].notnull()
return df.loc[user_id1, bool_array], df.loc[user_id2, bool_array]
#如此用户评分矩阵中用户1,和用户2的共同评分向量是
movieId
1 3.5
2 2.0
5 5.0
6 1.5
8 2.0
Name: 1, dtype: float64,
movieId
1 2.0
2 3.5
5 2.0
6 3.5
8 3.0
Name: 2, dtype: float64)
# 皮尔逊相关系数
def pearson(user_id1, user_id2):
x, y = build_xy(user_id1, user_id2)
mean1, mean2 = x.mean(), y.mean()
# 分母
denominator = (sum((x-mean1)**2)*sum((y-mean2)**2))**0.5
try:
value = sum((x - mean1) * (y - mean2)) / denominator
except ZeroDivisionError:
value = 0
return value
2.找到相似度最高的用户并进行推荐:
# 计算最相似的邻居
def computeNearestNeighbor(user_id, k=3):
return df.drop(user_id).index.to_series().apply(pearson, args=(user_id,)).nlargest(k)
#与用户3相似的前3个用户
userId
1 0.819782
6 0.801784
7 0.766965
Name: userId, dtype: float64
#推荐
def recommend(user_id):
# 找到最相似的用户id
nearest_user_id = computeNearestNeighbor(user_id).index[0]
print('最相似用户ID:')
print nearest_user_id
# 找出邻居评价过、但自己未曾评价的项目
# 结果:index是项目名称,values是评分
return df.loc[nearest_user_id, df.loc[user_id].isnull() & df.loc[nearest_user_id].notnull()].sort_values()
#对用户3进行推荐结果
最相似用户ID:
1
movieId
8 2.0
7 2.5
Name: 1, dtype: float64
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16