
我们都知道python是一款功能强大的数据分析工具,而且使用起来相对简单,被广泛应用于数据分析,web开发,人工智能等很多领域。语音识别,也叫作自动语音识别,其是以计算机自动将人类的语音内容转换为相应文字为目标。语音识别的应用范围,包括、简单的听写数据录入,语音拨号、语音导航、室内设备控制、语音文档检索等等。当语言识别遇上python,其实现将会变得更简单,快捷。今天小编与大家分享的就是python语音识别的一些基础知识,希望对大家有所帮助。
一、python语音识别原理
语音识别的首要任务是语音,通常通过麦克风,语音就能够从物理声音转换为电信号,之后再被转换为数据。语音一旦被数字化,就能够适用若干模型,最终转换为文本。
目前现代大多数语音识别系统,都是基于隐马尔可夫模型(HMM)。这一模型的工作原理为:语音信号在极短的时间尺度上,例如10 毫秒,能够被近似为静止过程,也就是一个统计特性不随时间变化的过程。而python语音识别技术, 一些服务能够通过 API 在线使用,并且大部分都提供了 Python SDK。
二、选择python 语音识别包
apiai
google-cloud-speech
pocketsphinx
SpeechRcognition
watson-developer-cloud
wit
其中, SpeechRcognition为最便捷的一种。
因为语音识别首先需要输入音频,而 SpeechRecognition 检索音频输入是极为简便快捷的,我们并不需要构建访问麦克风,也不需要从头开始处理音频文件的脚,SpeechRecognition 仅仅几分钟就能自动完成检索并运行。
SpeechRecognition 库能够满足几种主流语音 API ,灵活性非常高。例如: Google Web Speech API 支持硬编码到 SpeechRecognition 库中的默认 API 密钥,不需要注册就能直接使用。因此,SpeechRecognition 由于具有灵活性和易用性的优点,成为编写 Python 程序的最佳选择。
三、python 语音识别
import numpy as np import scipy.io.wavfile as wf import python_speech_features as sf import hmmlearn.hmm as hl # 提取样本信息 train_x,train_y = [],[] mfccs = np.array([]) for sound_files in files_list: for sound_file in sound_files: sample_rate,sigs = wf.read(sound_file) mfcc = sf.mfcc(sigs,sample_rate) # 将mfcc矩阵添加到mfccs中 if len(mfccs) == 0: mfccs == mfcc else: mfccs = np.append(mfccs,mfcc) # 将mfccs矩阵列表添加到训练集中 train_x.append(mfccs) # 最终的train_x len(sound_files)个特征的矩阵 # train_y存的是特征标签,比如:apple,banana,pear # 构建并训练隐马模型 models = {} for mfccs,label in zip(train_x,train_y): model = hl.GaussianHMM( n_components = 4, covariance_type = 'diag', n_iter = 1000 ) models[label] = model.fit(mfccs) # 同样方法获取测试集数据 # 测试 pred_y = [] for mfccs in test_x: # 验证每个模型对当前mfcc的匹配度得分 best_score, best_label = None, None for label, model in models.items(): score = model.score(mfccs) if (best_score is None) or (best_score < score): best_score = score best_label = label pred_y.append(best_label) print(test_y) print(pred_y)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09