京公网安备 11010802034615号
经营许可证编号:京B2-20210330
feature importance,根据含义就能理解,也就是特征重要性,在预测建模项目中起着非常重要作用,能够提供对数据、模型的见解,和如何进行降维和选择特征,并以此来提高预测模型的的效率和有效性。今天小编为大家带来的是如何理解随机森林中的feature importance,希望对大家有所帮助。
一、简单了解feature importance
实际情况中,一个数据集中往往包含数以万计个特征,如何在其中选择出,结果影响最大的几个特征,并通过这种方法缩减建立模型时的特征数,这是我们最为关心的问题。今天要介绍的是:用随机森林来对进行特征筛选。
用随机森林进行特征重要性评估的思想其实非常简单,简单来说,就是观察每个特征在随机森林中的每颗树上做了多少贡献,然后取平均值,最后对比特征之间的贡献大小。
总结一下就是:特征重要性是指,在全部单颗树上此特征重要性的一个平均值,而单颗树上特征重要性计算方法事:根据该特征进行分裂后平方损失的减少量的求和。
二、feature importance评分作用
1.特征重要性分可以凸显出特征与目标的相关相关程度,能够帮助我们了解数据集
2.特征重要性得分可以帮助了解模型
特征重要性得分通常是通过数据集拟合出的预测模型计算的。查看重要性得分能够洞悉此特定模型,以及知道在进行预测时特征的重要程度。
3.特征重要性能够用于改进预测模型
我们可以通过特征重要性得分来选择要删除的特征(即得分最低的特征)或者需要保留的特征(即得分最高的特征)。这其实是一种特征选择,能够简化正在建模的问题,加快建模过程,在某些情况下,还能够改善模型的性能。
三、python实现随机森林feature importances
import xlrd import csv import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.interpolate import spline #设置路径 path='/Users/kqq/Documents/postgraduate/烟叶原始光谱2017.4.7数字产地.csv' #读取文件 df = pd.read_csv(path, header = 0) #df.info() #训练随机森林模型 from sklearn.cross_validation import train_test_split from sklearn.ensemble import RandomForestClassifier x, y = df.iloc[:, 1:].values, df.iloc[:, 0].values x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 0) feat_labels = df.columns[1:] forest = RandomForestClassifier(n_estimators=10000, random_state=0, n_jobs=-1) forest.fit(x_train, y_train) #打印特征重要性评分 importances = forest.feature_importances_ #indices = np.argsort(importances)[::-1] imp=[] for f in range(x_train.shape[1]): print(f + 1, feat_labels[f], importances[f]) #将打印的重要性评分copy到featureScore.xlsx中;plot特征重要性 #设置路径 path='/Users/kqq/Documents/postgraduate/实验分析图/featureScore.xlsx' #打开文件 myBook=xlrd.open_workbook(path) #查询工作表 sheet_1_by_index=myBook.sheet_by_index(0) data=[] for i in range(0,sheet_1_by_index.nrows): data.append(sheet_1_by_index.row_values(i)) data=np.array(data) X=data[:1,].ravel() y=data[1:,] plt.figure(1,figsize=(8, 4)) i=0 print(len(y)) while i![]()
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26