在文本分类,垃圾邮件过滤的场景中,我们经常会用到的是朴素贝叶斯算法,今天小编就具体给大家介绍一下朴素贝叶斯算法
一、朴素贝叶斯算法简介
1.朴素贝叶斯算法概念
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。
2.朴素贝叶斯算法优缺点
优点:
(1)朴素贝叶斯模型发源于古典数学理论,分类效率比较稳定。
(2)对小规模的数据表现很好,能够用于多分类任务的处理,适合增量式训练,尤其是在数据量超出内存的情况下,能够一批批的去增量训练。
(3)算法简单,对缺失数据不太敏感。
缺点:
(1)理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间是相互独立的,而这个假设在实际应用中往往并不成立的。虽然在属性相关性较小时,朴素贝叶斯性能良好。但是,在属性个数比较多或者属性之间相关性较大时,分类效果并不好。
(2)需要知道先验概率,并且先验概率在很多时候多是取决于假设,假设的模型可以有多种,从而导致在某些时候会由于假设的先验模型而使得预测效果不佳。
(3)因为是通过先验和数据来决定后验的概率来决定分类的,所以分类决策存在一定的错误率。
(4)对输入数据的表达形式很敏感。
二、贝叶斯定理
既然,朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。那么接下来我们就来了解一下贝叶斯定理。
贝叶斯算法是英国数学家贝叶斯(约1701-1761)Thomas Bayes,生前提出为解决“逆概”问题而提出的。
条件概率就是事件 A 在另外一个事件 B 已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在 B 发生的条件下 A 发生的概率”。
联合概率表示两个事件共同发生(数学概念上的交集)的概率。A 与 B 的联合概率表示为
推导:
从条件概率的定义推导出贝叶斯定理。
根据条件概率的定义,在事件 B 发生的条件下事件 A 发生的概率为:
同样道理,在事件 A 发生的条件下事件 B 发生的概率为:
结合这两个方程式,能够得到:
这个引理有时称作概率乘法规则。上式两边同除以 P(A),若P(A)是非零的,就能得到贝叶斯定理:
# 文本分类器 import numpy as np # 数据样本 def loadDataSet(): # dataset = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], # # ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], # # ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'hime'], # # ['stop', 'posting', 'stupid', 'worthless', 'garbage'], # # ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], # # ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] dataset = [['玩', '游', '戏', '吧'], ['玩', 'lol', '吧'], ['我', '要', '学', '习'], ['学', '习', '使', '我', '快', '了'], ['学', '习', '万', '岁'], ['我', '要', '玩', '耍']] label = [1, 1, 0, 0, 0, 1] return dataset, label # 获取文档中出现的不重复词表 def createVocabList(dataset): vocaset = set([]) # 用集合结构得到不重复词表 for document in dataset: vocaset = vocaset | set(document) # 两个集合的并集 return list(vocaset) def setword(listvocaset, inputSet): newVocaset = [0] * len(listvocaset) for data in inputSet: if data in listvocaset: newVocaset[listvocaset.index(data)] = 1 # 如果文档中的单词在列表中,则列表对应索引元素变为1 return newVocaset def train(listnewVocaset, label): label = np.array(label) numDocument = len(listnewVocaset) # 样本总数 numWord = len(listnewVocaset[0]) # 词表的大小 pInsult = np.sum(label) / float(numDocument) p0num = np.ones(numWord) # 非侮辱词汇 p1num = np.ones(numWord) # 侮辱词汇 p0Denom = 2.0 # 拉普拉斯平滑 p1Denom = 2.0 for i in range(numDocument): if label[i] == 1: p1num += listnewVocaset[i] p1Denom += 1 else: p0num += listnewVocaset[i] p0Denom += 1 # 取对数是为了防止因为小数连乘而造成向下溢出 p0 = np.log(p0num / p0Denom) # 属于非侮辱性文档的概率 p1 = np.log(p1num / p1Denom) # 属于侮辱性文档的概率 return p0, p1, pInsult # 分类函数 def classiyyNB(Inputdata, p0, p1, pInsult): # 因为取对数,因此连乘操作就变成了连续相加 p0vec = np.sum(Inputdata * p0) + np.log(pInsult) p1vec = np.sum(Inputdata * p1) + np.log(1.0 - pInsult) if p0vec > p1vec: return 0 else: return 1 def testingNB(): dataset, label = loadDataSet() voast = createVocabList(dataset) listnewVocaset = [] for listvocaset in dataset: listnewVocaset.append(setword(voast, listvocaset)) p0, p1, pInsult = train(listnewVocaset, label) Inputdata = ['玩', '一', '玩'] Inputdata = np.array(Inputdata) Inputdata = setword(voast, Inputdata) print("这句话对应的分类是:") print(classiyyNB(Inputdata, p0, p1, pInsult)) testingNB()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31