在实际的数据清洗过程中,我们经常会遇到数据内容丢失的情况,这些丢失的数据内容就是缺失值。缺失值的产生的原因多种多样,主要分为机械原因和人为原因。
机械原因,也就是由于例如,数据存储失败,存储器损坏,机械故障等原因,某段时间数据未能收集,或保存的失败,从而造成的数据缺失。人为原因,主要是由于人的主观失误、历史局限或有意隐瞒造成的数据缺失。比如,在市场调查中被访人拒绝透露相关问题的答案,或者回答的问题是无效的,数据录入人员失误漏录了数据。不管是哪种原因造成的,我们都必须对缺失数据进行妥善处理,才能更好的保证最终数据分析结果的正确性和准确性。下面小编就介绍几种缺失值处理常用的方法,希望对大家有所帮助。
1.删除
如果缺失值的个数只占整体很小一部分的情况下,可以删除缺失值。
这种方法是将存在缺失值的数据条目(包括:对象,元组,记录)进行删除。简单便捷,在对象有多个属性缺失值、被删除的含缺失值的对象的数据量只占信息表中的数据量一小部分的情况下是非常有效的。
python代码
import numpy as np import pandas as pd data = pd.read_csv('data.csv',encoding='GBK') # 将空值形式的缺失值转换成可识别的类型 data = data.replace(' ', np.NaN) print(data.columns)#['id', 'label', 'a', 'b', 'c', 'd'] #将每列中缺失值的个数统计出来 null_all = data.isnull().sum() #id 0 #label 0 #a 7 #b 3 #c 3 #d 8 #查看a列有缺失值的数据 a_null = data[pd.isnull(data['a'])] #a列缺失占比 a_ratio = len(data[pd.isnull(data['a'])])/len(data) #0.0007 #丢弃缺失值,将存在缺失值的行丢失 new_drop = data.dropna(axis=0) print(new_drop.shape)#(9981,6) #丢弃某几列有缺失值的行 new_drop2 = data.dropna(axis=0, subset=['a','b']) print(new_drop2.shape)#(9990,6)
2.均值、众数、中位数填充
均值填充:对每一列的缺失值,填充当列的均值。
中位数填充:对每一列的缺失值,填充当列的中位数。
众数填充:对每一列的缺失值,填充当列的众数。
python代码
data['a'] = data['a'].fillna(data['a'].means()) #中位数填充 data['a'] = data['a'].fillna(data['a'].median()) #众数填充 data['a'] = data['a'].fillna(stats.mode(data['a'])[0][0]) #用前一个数据进行填充 data['a'] = data['a'].fillna(method='pad') #用后一个数据进行填充 data['a'] = data['a'].fillna(method='bfill')
3.填充上下条的数据
对每一条数据的缺失值,填充其上下条数据的值。
python代码
train_data.fillna(method='pad', inplace=True) # 填充前一条数据的值,但是前一条也不一定有值 train_data.fillna(0, inplace=True) train_data.fillna(method='bfill', inplace=True) # 填充后一条数据的值,但是后一条也不一定有值 train_data.fillna(0, inplace=True)
4.填充插值得到的数据
interpolate()插值法,计算的是缺失值前一个值和后一个值的平均数。
python代码
data['a'] = data['a'].interpolate()
5.KNN填充
填充近邻的数据,先利用KNN计算临近的k个数据,然后填充他们的均值。
from fancyimpute import KNN fill_knn = KNN(k=3).fit_transform(data) data = pd.DataFrame(fill_knn) print(data.head()) #out 0 1 2 3 4 5 0 111.0 0.0 2.0 360.0 4.000000 1.0 1 112.0 1.0 9.0 1080.0 3.000000 1.0 2 113.0 1.0 9.0 1080.0 2.000000 1.0 3 114.0 0.0 1.0 360.0 *3.862873 *1.0 4 115.0 0.0 1.0 270.0 5.000000 1.0
6.随机森林填充
from sklearn.ensemble import RandomForestRegressor #提取已有的数据特征 process_df = data.ix[:, [1, 2, 3, 4, 5]] # 分成已知该特征和未知该特征两部分 known = process_df[process_df.c.notnull()].as_matrix() uknown = process_df[process_df.c.isnull()].as_matrix() # X为特征属性值 X = known[:, 1:3] # print(X[0:10]) # Y为结果标签 y = known[:, 0] print(y) # 训练模型 rf = RandomForestRegressor(random_state=0, n_estimators=200, max_depth=3, n_jobs=-1) rf.fit(X, y) # 预测缺失值 predicted = rf.predict(uknown[:, 1:3]) print(predicted) #将预测值填补原缺失值 data.loc[(data.c.isnull()), 'c'] = predicted print(data[0:10])以上就是小编给大家分享的python实现缺失值处理的几种方法,希望对大家缺失值的处理有所帮助。如果,大家在缺失值处理方面还有哪些好的方法,欢迎随时和小编交流。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10