在实际的数据清洗过程中,我们经常会遇到数据内容丢失的情况,这些丢失的数据内容就是缺失值。缺失值的产生的原因多种多样,主要分为机械原因和人为原因。
机械原因,也就是由于例如,数据存储失败,存储器损坏,机械故障等原因,某段时间数据未能收集,或保存的失败,从而造成的数据缺失。人为原因,主要是由于人的主观失误、历史局限或有意隐瞒造成的数据缺失。比如,在市场调查中被访人拒绝透露相关问题的答案,或者回答的问题是无效的,数据录入人员失误漏录了数据。不管是哪种原因造成的,我们都必须对缺失数据进行妥善处理,才能更好的保证最终数据分析结果的正确性和准确性。下面小编就介绍几种缺失值处理常用的方法,希望对大家有所帮助。
1.删除
如果缺失值的个数只占整体很小一部分的情况下,可以删除缺失值。
这种方法是将存在缺失值的数据条目(包括:对象,元组,记录)进行删除。简单便捷,在对象有多个属性缺失值、被删除的含缺失值的对象的数据量只占信息表中的数据量一小部分的情况下是非常有效的。
python代码
import numpy as np import pandas as pd data = pd.read_csv('data.csv',encoding='GBK') # 将空值形式的缺失值转换成可识别的类型 data = data.replace(' ', np.NaN) print(data.columns)#['id', 'label', 'a', 'b', 'c', 'd'] #将每列中缺失值的个数统计出来 null_all = data.isnull().sum() #id 0 #label 0 #a 7 #b 3 #c 3 #d 8 #查看a列有缺失值的数据 a_null = data[pd.isnull(data['a'])] #a列缺失占比 a_ratio = len(data[pd.isnull(data['a'])])/len(data) #0.0007 #丢弃缺失值,将存在缺失值的行丢失 new_drop = data.dropna(axis=0) print(new_drop.shape)#(9981,6) #丢弃某几列有缺失值的行 new_drop2 = data.dropna(axis=0, subset=['a','b']) print(new_drop2.shape)#(9990,6)
2.均值、众数、中位数填充
均值填充:对每一列的缺失值,填充当列的均值。
中位数填充:对每一列的缺失值,填充当列的中位数。
众数填充:对每一列的缺失值,填充当列的众数。
python代码
data['a'] = data['a'].fillna(data['a'].means()) #中位数填充 data['a'] = data['a'].fillna(data['a'].median()) #众数填充 data['a'] = data['a'].fillna(stats.mode(data['a'])[0][0]) #用前一个数据进行填充 data['a'] = data['a'].fillna(method='pad') #用后一个数据进行填充 data['a'] = data['a'].fillna(method='bfill')
3.填充上下条的数据
对每一条数据的缺失值,填充其上下条数据的值。
python代码
train_data.fillna(method='pad', inplace=True) # 填充前一条数据的值,但是前一条也不一定有值 train_data.fillna(0, inplace=True) train_data.fillna(method='bfill', inplace=True) # 填充后一条数据的值,但是后一条也不一定有值 train_data.fillna(0, inplace=True)
4.填充插值得到的数据
interpolate()插值法,计算的是缺失值前一个值和后一个值的平均数。
python代码
data['a'] = data['a'].interpolate()
5.KNN填充
填充近邻的数据,先利用KNN计算临近的k个数据,然后填充他们的均值。
from fancyimpute import KNN fill_knn = KNN(k=3).fit_transform(data) data = pd.DataFrame(fill_knn) print(data.head()) #out 0 1 2 3 4 5 0 111.0 0.0 2.0 360.0 4.000000 1.0 1 112.0 1.0 9.0 1080.0 3.000000 1.0 2 113.0 1.0 9.0 1080.0 2.000000 1.0 3 114.0 0.0 1.0 360.0 *3.862873 *1.0 4 115.0 0.0 1.0 270.0 5.000000 1.0
6.随机森林填充
from sklearn.ensemble import RandomForestRegressor #提取已有的数据特征 process_df = data.ix[:, [1, 2, 3, 4, 5]] # 分成已知该特征和未知该特征两部分 known = process_df[process_df.c.notnull()].as_matrix() uknown = process_df[process_df.c.isnull()].as_matrix() # X为特征属性值 X = known[:, 1:3] # print(X[0:10]) # Y为结果标签 y = known[:, 0] print(y) # 训练模型 rf = RandomForestRegressor(random_state=0, n_estimators=200, max_depth=3, n_jobs=-1) rf.fit(X, y) # 预测缺失值 predicted = rf.predict(uknown[:, 1:3]) print(predicted) #将预测值填补原缺失值 data.loc[(data.c.isnull()), 'c'] = predicted print(data[0:10])以上就是小编给大家分享的python实现缺失值处理的几种方法,希望对大家缺失值的处理有所帮助。如果,大家在缺失值处理方面还有哪些好的方法,欢迎随时和小编交流。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16