京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在实际的数据清洗过程中,我们经常会遇到数据内容丢失的情况,这些丢失的数据内容就是缺失值。缺失值的产生的原因多种多样,主要分为机械原因和人为原因。
机械原因,也就是由于例如,数据存储失败,存储器损坏,机械故障等原因,某段时间数据未能收集,或保存的失败,从而造成的数据缺失。人为原因,主要是由于人的主观失误、历史局限或有意隐瞒造成的数据缺失。比如,在市场调查中被访人拒绝透露相关问题的答案,或者回答的问题是无效的,数据录入人员失误漏录了数据。不管是哪种原因造成的,我们都必须对缺失数据进行妥善处理,才能更好的保证最终数据分析结果的正确性和准确性。下面小编就介绍几种缺失值处理常用的方法,希望对大家有所帮助。
1.删除
如果缺失值的个数只占整体很小一部分的情况下,可以删除缺失值。
这种方法是将存在缺失值的数据条目(包括:对象,元组,记录)进行删除。简单便捷,在对象有多个属性缺失值、被删除的含缺失值的对象的数据量只占信息表中的数据量一小部分的情况下是非常有效的。
python代码
import numpy as np import pandas as pd data = pd.read_csv('data.csv',encoding='GBK') # 将空值形式的缺失值转换成可识别的类型 data = data.replace(' ', np.NaN) print(data.columns)#['id', 'label', 'a', 'b', 'c', 'd'] #将每列中缺失值的个数统计出来 null_all = data.isnull().sum() #id 0 #label 0 #a 7 #b 3 #c 3 #d 8 #查看a列有缺失值的数据 a_null = data[pd.isnull(data['a'])] #a列缺失占比 a_ratio = len(data[pd.isnull(data['a'])])/len(data) #0.0007 #丢弃缺失值,将存在缺失值的行丢失 new_drop = data.dropna(axis=0) print(new_drop.shape)#(9981,6) #丢弃某几列有缺失值的行 new_drop2 = data.dropna(axis=0, subset=['a','b']) print(new_drop2.shape)#(9990,6)
2.均值、众数、中位数填充
均值填充:对每一列的缺失值,填充当列的均值。
中位数填充:对每一列的缺失值,填充当列的中位数。
众数填充:对每一列的缺失值,填充当列的众数。
python代码
data['a'] = data['a'].fillna(data['a'].means()) #中位数填充 data['a'] = data['a'].fillna(data['a'].median()) #众数填充 data['a'] = data['a'].fillna(stats.mode(data['a'])[0][0]) #用前一个数据进行填充 data['a'] = data['a'].fillna(method='pad') #用后一个数据进行填充 data['a'] = data['a'].fillna(method='bfill')
3.填充上下条的数据
对每一条数据的缺失值,填充其上下条数据的值。
python代码
train_data.fillna(method='pad', inplace=True) # 填充前一条数据的值,但是前一条也不一定有值 train_data.fillna(0, inplace=True) train_data.fillna(method='bfill', inplace=True) # 填充后一条数据的值,但是后一条也不一定有值 train_data.fillna(0, inplace=True)
4.填充插值得到的数据
interpolate()插值法,计算的是缺失值前一个值和后一个值的平均数。
python代码
data['a'] = data['a'].interpolate()
5.KNN填充
填充近邻的数据,先利用KNN计算临近的k个数据,然后填充他们的均值。
from fancyimpute import KNN fill_knn = KNN(k=3).fit_transform(data) data = pd.DataFrame(fill_knn) print(data.head()) #out 0 1 2 3 4 5 0 111.0 0.0 2.0 360.0 4.000000 1.0 1 112.0 1.0 9.0 1080.0 3.000000 1.0 2 113.0 1.0 9.0 1080.0 2.000000 1.0 3 114.0 0.0 1.0 360.0 *3.862873 *1.0 4 115.0 0.0 1.0 270.0 5.000000 1.0
6.随机森林填充
from sklearn.ensemble import RandomForestRegressor #提取已有的数据特征 process_df = data.ix[:, [1, 2, 3, 4, 5]] # 分成已知该特征和未知该特征两部分 known = process_df[process_df.c.notnull()].as_matrix() uknown = process_df[process_df.c.isnull()].as_matrix() # X为特征属性值 X = known[:, 1:3] # print(X[0:10]) # Y为结果标签 y = known[:, 0] print(y) # 训练模型 rf = RandomForestRegressor(random_state=0, n_estimators=200, max_depth=3, n_jobs=-1) rf.fit(X, y) # 预测缺失值 predicted = rf.predict(uknown[:, 1:3]) print(predicted) #将预测值填补原缺失值 data.loc[(data.c.isnull()), 'c'] = predicted print(data[0:10])以上就是小编给大家分享的python实现缺失值处理的几种方法,希望对大家缺失值的处理有所帮助。如果,大家在缺失值处理方面还有哪些好的方法,欢迎随时和小编交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24