机器学习中,我们最常遇到的就是无监督,有监督,半监督了。无监督和有监督的区别,小编之前跟大家分享过,今天跟大家分享的是无监督机器学习中常见的聚类算法,希望对大家无监督学习有所帮助。
一、基本概念
1.无监督学习:
无监督学习是机器学习的一种方法,根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题。无监督学习应用主要包含:聚类分析、关系规则、维度缩减。
2.聚类:
无监督学习里典型例子是聚类。聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。
最常见的无监督聚类算法:
K均值聚类
分层聚类
基于密度的扫描聚类(DBSCAN)
二、无监督聚类算法--K均值聚类
K均值聚类 是我们最常用的基于欧式距离的聚类算法,它是数值的、非监督的、非确定的、迭代的,该算法旨在最小化一个目标函数——误差平方函数(所有的观测点与其中心点的距离之和),其认为两个目标的距离越近,相似度越大,由于具有出色的速度和良好的可扩展性,K均值聚类算得上是最著名的聚类方法。
1.K均值中最常用的距离是欧氏距离平方。m维空间中两点x和y之间的距离的示例是:
这里,j是采样点x和y的第j维(或特征列)。
集群惯性是聚类上下文中给出的平方误差之和的名称,表示如下:
其中μ(j)是簇j的质心,并且如果样本x(i)在簇j中则w(i,j)是1.否则是0.
K均值可以理解为试图最小化群集惯性因子的算法。
2.具体算法
(1)选择k值,即我们想要查找的聚类数量。
(2)算法将随机选择每个聚类的质心。
(3)将每个数据点分配给最近的质心(使用欧氏距离)。
(4)计算群集惯性。
(5)将计算新的质心作为属于上一步的质心的点的平均值。换句话说,通过计算数据点到每个簇中心的最小二次误差,将中心移向该点。
(6)返回第3步。
二、无监督聚类算法--分层聚类
1.分层聚类是基于prototyope的聚类算法的替代方案。分层聚类的主要优点是不需要指定聚类的数量,它会自己找到它。此外,它还可以绘制树状图。树状图是二元分层聚类的可视化。
在底部融合的观察是相似的,而在顶部的观察是完全不同的。对于树状图,基于垂直轴的位置而不是水平轴的位置进行结算。
2.分层聚类的类型
分层聚类有两种方法:集聚和分裂。
分裂:这种方法首先将所有数据点放入一个集群中。 然后,它将迭代地将簇分割成较小的簇,直到它们中的每一个仅包含一个样本。
集聚:这种方法从每个样本作为不同的集群开始,然后将它们彼此靠近,直到只有一个集群。
3.分层聚类优缺点
分层聚类的优点;
(1)由此产生的层次结构表示可以提供非常丰富的信息。
(2)树状图提供了一种有趣且信息丰富的可视化方式。
(3)当数据集包含真正的层次关系时,它们特别强大。
分层聚类的缺点:
(1)分层聚类对异常值非常敏感,并且在其存在的情况下,模型性能显着降低。
(2)从计算上讲,分层聚类非常昂贵。
三、无监督聚类算法--DBSCAN 聚类
DBSCAN(带噪声的基于密度的空间聚类方法)是一种流行的聚类算法,它被用来在预测分析中替代 K 均值算法。它并不要求输入簇的个数才能运行。但是,你需要对其他两个参数进行调优。
优缺点:
1.优点
①不需要指定簇的个数;
②可以对任意形状的稠密数据集进行聚类,相对的,K-Means之类的聚类算法一般只适用于凸数据集;
③擅长找到离群点(检测任务);
④两个参数ε\varepsilonε和minPts就够了;
⑤聚类结果没有偏倚,相对的,K-Means之类的聚类算法初始值对聚类结果有很大影响。
2.缺点
①高维数据有些困难;
②Sklearn中效率很慢(数据削减策略);
③如果样本集的密度不均匀、聚类间距差相差很大时,聚类质量较差,这时用DBSCAN聚类一般不适合;
④调参相对于传统的K-Means之类的聚类算法稍复杂,主要需要对距离阈值ε\varepsilonε,邻域样本数阈值MinPts联合调参,不同的参数组合对最后的聚类效果有较大影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12