线性回归就是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。我们在机器学习过程中也经常会遇到构建线性回归模型的场景,对于初学者来说还是比较困难的。今天小编就给大家分享一篇关于python实战线性回归模型的文章,希望对于大家python的学习和使用,以及线性回归模型的构建有所帮助。
文章来源: 早起Python
作者:萝卜
「多元线性回归模型」非常常见,是大多数人入门机器学习的第一个案例,尽管如此,里面还是有许多值得学习和注意的地方。其中多元共线性这个问题将贯穿所有的机器学习模型,所以本文会「将原理知识穿插于代码段中」,争取以不一样的视角来叙述和讲解「如何更好的构建和优化多元线性回归模型」。主要将分为两个部分:
Python 多元线性回归的模型的实战案例有非常多,这里虽然选用的经典的房价预测,但贵在的流程简洁完整,其中用到的精度优化方法效果拔群,能提供比较好的参考价值。
本文的数据集是经过清洗的美国某地区的房价数据集
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv('house_prices.csv') df.info();df.head()
参数说明:
现在我们直接构建多元线性回归模型
from statsmodels.formula.api import ols # 小写的 ols 函数才会自带截距项,OLS 则不会 # 固定格式:因变量 ~ 自变量(+ 号连接) lm = ols('price ~ area + bedrooms + bathrooms', data=df).fit() lm.summary()
红框为我们关注的结果值,其中截距项Intercept的 P 值没有意义,可以不用管它
从上图可以看到,模型的精度较低,因为还有类别变量neighborhood和style没有完全利用。这里我们先查看一下类别变量的类别分布情况:
# 类别变量,又称为名义变量,nominal variables nominal_vars = ['neighborhood', 'style'] for each in nominal_vars: print(each, ':') print(df[each].agg(['value_counts']).T) # Pandas 骚操作 # 直接 .value_counts().T 无法实现下面的效果 ## 必须得 agg,而且里面的中括号 [] 也不能少 print('='*35)
因为类别变量无法直接放入模型,这里需要转换一下,而多元线性回归模型中类别变量的转换最常用的方法之一便是将其转化成虚拟变量。原理其实非常简单,将无法直接用于建模的名义变量转换成可放入模型的虚拟变量的核心就短短八个字:「四散拆开,非此即彼」。下面用一个只有 4 行的微型数据集辅以说明。
从上表中,不难发现:
接下来要做的就是将生成的虚拟变量们放入多元线性回归模型,但要注意的是:「转化后的虚拟变量们需要舍弃一个」,才能得到满秩矩阵。具体原因和有关线性代数的解释可以查看笔者打包好的论文,我们可以理解为,当该名义变量可划分为 n 类时,只需要 n-1 个虚拟变量就已足够获知所有信息了。该丢弃哪个,可根据实际情况来决定。
因此为原数据集的某名义变量添加虚拟变量的步骤为:
注意虚拟变量设置成功后,需要与原来的数据集拼接,这样才能将其一起放进模型。
再次建模后,发现模型精度大大提升,但潜在的多元共线性问题也随之显现出来
在解释模型中虚拟变量的系数之前,我们先消除模型中多元共线性的影响,因为在排除共线性后,模型中的各个自变量的系数又会改变,最终的多元线性回归模型的等式又会不一样。多重线性回归模型的主要假设之一是我们的预测变量(自变量)彼此不相关。我们希望预测变量(自变量)与反应变量(因变量)相关,而不是彼此之间具有相关性。方差膨胀因子(Variance Inflation Factor,以下简称VIF),是「指解释变量之间存在多重共线性时的方差与不存在多重共线性时的方差之比」
上图公式可以看出在方差膨胀因子的检测中:
越大,显示共线性越严重。经验判断方法表明:「当 ,不存在多重共线性;当 ,存在较强的多重共线性;当 ,存在严重多重共线性」。
我们自己来写一个方差膨胀因子的检测函数
def vif(df, col_i): """ df: 整份数据 col_i:被检测的列名 """ cols = list(df.columns) cols.remove(col_i) cols_noti = cols formula = col_i + '~' + '+'.join(cols_noti) r2 = ols(formula, df).fit().rsquared return 1. / (1. - r2)
现在进行检测
test_data = results[['area', 'bedrooms', 'bathrooms', 'A', 'B']] for i in test_data.columns: print(i, '\t', vif(df=test_data, col_i=i))
发现bedrooms和bathrooms存在强相关性,可能这两个变量是解释同一个问题,方差膨胀因子较大的自变量通常是成对出现的。
果然,bedrooms和bathrooms这两个变量的方差膨胀因子较高,这里删除自变量bedrooms再次进行建模
lm = ols(formula='price ~ area + bathrooms + A + B', data=results).fit() lm.summary()
模型精度稍降,但消除了多元共线性后能够使模型的泛化能力提升。再次进行多元共线性检测
test_data = results[['area', 'bedrooms', 'A', 'B']] for i in test_data.columns: print(i, '\t', vif(df=test_data, col_i=i))
那么多元共线性就「只有通过方差膨胀因子才能看的出来吗?」 其实并不一定,通过结合散点图或相关稀疏矩阵和模型中自变量的系数也能看出端倪。下图是未处理多元共线性时的自变量系数。
可以很明显的看出,bathrooms的参数很可能是有问题的,怎么可能bathrooms的数据量每增加一个,房屋总价还减少 1.373*10 的四次方美元呢?简单的画个散点图和热力图也应该知道房屋总价与bathrooms 个数应该是成正比例关系的。
多元线性回归模型的可解释性比较强,将模型参数打印出来即可求出因变量与自变量的关系
所以最终的建模结果如下,且该模型的精度为0.916
另外在等式结果中,截距项Intercept和area,bedrooms等变量的系数都还好理解;A,B 这两个虚拟变量可能相对困难些。其实根据原理部分的表格来看,如果房屋在 C 区,那等式中 A 和 B 这两个字母的值便是 0,所以这便引出了非常重要的一点:使用了虚拟变量的多元线性回归模型结果中,存在于模型内的虚拟变量都是跟被删除掉的那个虚拟变量进行比较。所以这个结果便表示在其他情况完全一样时(即除虚拟变量外的项)A 区的房屋比 C 区低 8707.18 美元,B 区则比 C 区贵 449896.73.7 美元。当然我们也可以画个箱线图来查看与检验,发现结果正如模型中 A 与 B 的系数那般显示。
本文以多元线性回归为基础和前提,在因变量房价与多个自变量的实际观测值建立了多元线性回归模型;分析并检验各个预测变量对因变量的综合线性影响的显著性,并尽可能的消除多重共线性的影响,筛选出因变量有显著线性影响的自变量,对基准模型进行优化,并对各自变量相对重要性进行评定,进而提升了回归模型的预测精度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31