作者:丁点helper
来源: 丁点帮你
重复测量方差分析与我们之前学习的各种方差分析(单变量,对于因变量而言)的区别主要在于“重复”二字。
之前的方差分析是对一个变量的变异进行分解(即所谓的离均差平方和);重复测量的方差分析则是针对多个变量进行的,也可以叫做变异分解,但此时它有了一个新名字,叫方差-协方差矩阵的变异分解。
什么叫协方差?什么又叫矩阵?
简单说说,协方差就是两个变量之间相关关系的度量,学习过相关分析的同学可能熟悉点儿,相关系数就是通过协方差计算出来的。
正是因为出现了多个因变量、所以才会需要研究相关(即协方差),而也因为相关,其就不能使用一般的方差分析,因为破坏了独立性假设。
而对于矩阵,它是高等数学-线性代数中最基本的概念,暂时就把它看做一个一个数的方阵。
出现这么多新的概念,就是因为,现在我们分析的因变量不再是一个,而是多个,所以,重复测量的方差分析,也可以看做是多元方差分析(多个因变量)。
实际上,SPSS也是这样操作的,大家听过的“球形检验”,就是用来判断需不要看多元方差分析的结果,下面我们通过一个案例来具体讲讲。
案例:某研究者通过动物实验来探究海水淹溺后残留于肺内的海水是否会导致肺损伤。将12只杂种犬随机分为两组,每组6只,一组用海水灌注右肺,另一组海水灌注全肺。每只犬分别在海水灌注前、灌注后5min、30min、60min、120min检测氧分压。
(案例来自医咖会-刘桂分《医学统计学》)
具体的数据如下表
这是一个典型的可以使用重复测量方差分析的数据,而且稍显复杂的是,这里进行了分组:灌注右肺(用“1”表示)和灌注全肺(用“2”表示)。
还记得我们之前讲协方差分析的时候强调的内容吗?分析数据前,首先找到X、Y、Z,即自变量、因变量、协变量。
本案例中自变量是分组变量(右肺VS全肺),因变量是氧分压,没有协变量。
不过,我们昨天说过,重复测量的方差分析很重要的一点是检验“时间效应”,即不同的时间点测量的数据是否有差异。
所以,在这里,也可以把时间效应看做一个特殊的自变量,而且它有一个专门的名字,叫within-Subject Factor,一般直译为“受试者内因素”。
SPSS中进行重复测量方差分析的具体操作可以参考链接(来源:医咖会),之后我们也考虑录制专门的视频进行讲解。
做过重复测量的同学可能知道,SPSS会输出很多结果,让人眼花缭乱,所以到底应该怎么看这些结果呢?
下面这张图给我们做了一个梳理,推荐给大家:
由上图可知,对于SPSS给出的一系列结果,大家应该首先找到“球形检验”的结果(Mauchly's Test of Sphericity):
球形检验结果,该例不满足球形假设(P小于0.05)
如果球形检验的P值(sig)大于0.05,称作数据满足球形假设,此时可直接看一元方差分析的结果(Tests of With-in Subjects Effects),而且是看第一行(Sphericity Assumed),根据其P值(sig)判断时间效应(time)、以及时间和分组的交互效应(time*group)。
如果球形检验的P值(sig)小于0.05,则称数据不满足球形假设,此时就需要结合多元方差分析和一元方差分析的矫正结果,一般两个结果会一致,如果不一致则以多元方差分析的结果为准。
结合本案例,因为其球形检验P值小于0.05,不符合假设,所以看多元方差分析或校正后的一元结果,如下图:
多元方差分析结果
一元方差分析结果(校正后)
蓝线代表右肺组;绿线代表全肺组
组间比较的单变量方差分析
可以发现,以上结果都显示差异有统计学意义(P<0.001),意味着:
1) 时间效应(time)具有统计学意义:即灌注海水后,犬肺的氧分压会随着灌注的时间的延长而逐渐下降,到灌注后60min达到最低;
2)交互效应(time*group)具有统计学意义:随着灌注时间的延长,单肺灌注与全肺灌注氧分压下降的幅度不同,从图形上看就是,直线的斜率不同,全肺灌注的犬氧分压下降幅度大(直线更陡峭)
3)单独组间效应(group)具有统计学意义:此处SPSS对多个因变量进行了数据变换,从而进行单变量方差分析,结果显示P<0.05,表明灌注部位会影响氧分压。
由此,对重复测量的方差分析进行一个简单总结:
重复测量方差分析最核心的功能是研究指标是否随着时间的变化而变化(time),拿到SPSS的分析结果,应该首先看“球形检验”,然后根据其结果,选择对应的分析表格。如果除了时间因素之外还有分组效应,则分析逻辑与单变量的单因素或多因素方差分析类似。
以上图片参考来自“医咖会”,如有侵权,请联系删除!
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14